scholarly journals Manufacture of a non-woven using bamboo cellulose base (angustifolia) as a filter medium for the manufacture of masks

Author(s):  
Willam Ricardo Esparza Encalada ◽  
Wilson Herrera ◽  
Luís Chamorro

The purpose of this study was to produce a non-woven, using a base of bamboo cellulose (angustifolia) with a particle size of 1mm, and it begins with the weighing of 100 g bamboo cellulose, which is mixed with a bath ratio bamboo / water 1:10 in a mixer grinder, placing 1 liter of water mixes and forms a viscous solution, this solution is placed on a frame stretched with polyester woven mesh and another frame without mesh, once the layer is formed, it is remove the upper frame without mesh and compress it manually with a sponge, removing excess water and drying in the room at a temperature of 20 0C for 8 hours, evaporated the moisture from the bamboo cellulose (angustifolia) and dried, separated from the frame and a laminated nonwoven (filter) was obtained. Finding that the breaking strength and its elongation in thickness of 0.3mm is 2.73 N and 0.895 mm respectively and thickness of 5mm is 31.2 N and 1.01 mm. The resistance and extension is very low in the two cases, and there are no statistically significant differences between their sample medians (p> 0.05). It can be concluded that when using bamboo cellulose base with a particle size of 1mm, and forming the non-woven with thickness of 0.5mm and 3mm, it has low resistance and extension, finding that if the raw material has an influence on the conformation of the non-woven.

2012 ◽  
Vol 8 (1) ◽  
pp. 123-132 ◽  
Author(s):  
Zsuzsanna Horváth ◽  
Béla Marosvölgyi ◽  
Christine Idler ◽  
Ralf Pecenka ◽  
Hannes Lenz

Abstract - There are several problems in storing wood chips freshly harvested from short rotation plantations, which result in quality losses as well as in dry matter and energy losses. The factors influencing the degradation of raw material are examined in this paper with special focus on fungal development. An excessive growth of fungi is connected to dry matter losses and also to an increased health risk during raw material handling. The following factors were measured during 6 months storage of poplar wood chips depending on particle size: box temperature, moisture content, pH-value, appearance of fungi in the storage and the concentration of fungal particles in the air. The results show a close connection between particle size, temperature and attack of fungi. During the storage mesophilic and termophilic species of the genera Alternaria, Aspergillus, Cladosporium, Mucor and Penicillium appeared. The concentration of fungal particles is the highest for fine chips and decreases in bigger particles. There was a special focus on the investigation of the properties of coarse chips (G 50), which represent a good compromise between handling, storage losses and health risk due to fungal development.


Gefahrstoffe ◽  
2019 ◽  
Vol 79 (11-12) ◽  
pp. 443-450
Author(s):  
P. Bächler ◽  
J. Meyer ◽  
A. Dittler

The reduction of fine dust emissions with pulse-jet cleaned filters plays an important role in industrial gas cleaning to meet emission standards and protect the environment. The dust emission of technical facilities is typically measured “end of pipe”, so that no information about the local emission contribution of individual filter elements exists. Cheap and compact low-cost sensors for the detection of particulate matter (PM) concentrations, which have been prominently applied for immission monitoring in recent years have the potential for emission measurement of filters to improve process monitoring. This publication discusses the suitability of a low-cost PM-sensor, the model SPS30 from the manufacturer Sensirion, in terms of the potential for particle emission measurement of surface filters in a filter test rig based on DIN ISO 11057. A Promo® 2000 in combination with a Welas® 2100 sensor serves as the optical reference device for the evaluation of the detected PM2.5 concentration and particle size distribution of the emission measured by the low-cost sensor. The Sensirion sensor shows qualitatively similar results of the detected PM2.5 emission as the low-cost sensor SDS011 from the manufacturer Nova Fitness, which was investigated by Schwarz et al. in a former study. The typical emission peak after jet-pulse cleaning of the filter, due to the penetration of particles through the filter medium, is detected during Δp-controlled operation. The particle size distribution calculated from the size resolved number concentrations of the low-cost sensor yields a distinct distribution for three different employed filter media and qualitatively fits the size distribution detected by the Palas® reference. The emission of these three different types of filter media can be distinguished clearly by the measured PM2.5 concentration and the emitted mass per cycle and filter area, demonstrating the potential for PM emission monitoring by the low-cost PM-sensor. During the period of Δt-controlled filter aging, a decreasing emission, caused by an increasing amount of stored particles in the filter medium, is detected. Due to the reduced particle emission after filter aging, the specified maximum concentration of the low-cost sensor is not exceeded so that coincidence is unlikely to affect the measurement results of the sensor for all but the very first stage of filter life.


2020 ◽  
Vol 1012 ◽  
pp. 233-238
Author(s):  
Vanessa Moura de Souza ◽  
Vinícius Martins ◽  
Rejane Maria Candiota Tubino

This paper evaluated the use of the pitcher, a ceramic waste obtained through the quality process of a sanitary ware industry, in the development of a material for usage in the manufacture of sintered parts. The pitcher was obtained through powder technology and is composed, according to the chemical analysis obtained by X-ray fluorescence spectrometry, of clayey minerals (clay and kaolin), quartz, and feldspar, which may include ceramic rocks such as granite, pegmatite and phyllite; that is, it has proved to be a potential raw material due to the minerals that can still be reused. The pitcher passed through a granulometry-based selection process, sieving about 20kg using the following sieve sequence: 18 MESH, 25 MESH, 30 MESH, 120 MESH and 400 MESH; with around 70% of the residue being retained in the sieves of 120 and 400 MESH, which were selected to be used in the evaluation. The samples were compacted in a manual press with different pressures, between 300 and 1000 kgf, and after were sintered at a temperature of 1100oC in a resistive furnace. To characterize the material, the apparent and green density, as well as the compressibility curve, were determined to identify the best compression pressure. The microstructure of the test specimen and the pitcher homogeneity were evaluated using Scanning Electron Microscopy (SEM). Both particle sizes presented the typical compressibility curve, in which the density increases with increasing compaction pressure, while the curve slope decreases with increasing pressure. The density increase with the increasing compaction pressure indicates a good densification for the temperatures, independent of the sample granulometry. The sintering porosity decreased proportionally to the particle size in the sintered samples. The analysis showed that the particle size of 400 MESH sintered at 1100oC obtained more porous surfaces, thus indicating a promising future for the manufacture of parts using powder technology, especially for the development of filters.


2019 ◽  
Vol 62 (3) ◽  
pp. 201-207
Author(s):  
V. S. Gulyakov ◽  
A. S. Vusikhis ◽  
S. A. Petrova

Technogenic wastes are by-products of any production. At the same time, they can be a raw material for obtaining useful products. In particular, the waste from the Shabrovsky talcum combine, can be used to produce magnesian fluxes. They are dispersed, so must be agglomerated. Therefore, a method has been proposed for the preparation of non-roasting pellets. As a binder, a mixture of water and peat, treated in a hydropercussion cavitation device, was used. The resulting material is a colloidal system with particle size of less than 10–4 m. To measure the particle size, dynamic light scattering method was used. For comparison, a similar mixture of water and peat treated in a planetary mill was studied. An analysis of the data obtained has shown that particles of micron size occupy up to 90 % of volume in the sample after treatment of the mixture in hydropercussion cavitation device. In a sample that was ground in a planetary mill, most of the particles are characterized by tens or even hundreds of microns. Determination of crushing strength of non-roasting pellets is performed by compressing in a tensile machine of model P-0.5. For this purpose, the granules were used both immediately after granulation and after drying at 105 °C to a moisture content of less than 1.5 %. With an optimum proportion of binders of 15 – 20 %, the strength of raw pellets was 15 N, and the strength of dry pellets was 90 N. With a binder percentage of less than 15 %, both raw and dried pellets had low strength. With a binder content of more than 20 %, the mixture had excessive plasticity and tackiness, which led to the formation of conglomerates of several granules. Despite the fact that the strength parameters of the non-roasting pellet are lower than those of pellets used in blast-furnace production, they are sufficient for use in steelmaking processes.


2020 ◽  
Vol 8 (6) ◽  
pp. 2565-2570

Today, the production of knitwear is developing at a faster pace. In industry, trade and the service sector, the production of knitwear, combining high technology and low cost, with good consumer properties is urgently required. Consumers today are looking for comfort, fashion and style, which results in ever-changing demands on the apparel market. As the consumer’s requirements to quality and appearance of product are daily increasing, the attention to the question of replacement of a smooth cloth on wide assortment with pattern effect is sharply brought. This work deals with the analysis of technological parameters and physical-mechanical properties of the knit fabric with pattern effect. With the aim of to expand the assortments of knitwear and to use the technological capabilities of double-bed flat knitting machines in fullest extent possible, on the base of rib structure, by using of loop transference 2 new variants of combined structure were developed and recommended. Samples differ from each other by the rapport and pattern effect of the knit structure. Technological parameters, such as loop length, stitch density, surface and volume density, physical-mechanical properties, such as breaking strength and elongation of newly developed combined knit structures were also determined by experimental method. Loop length and stitch density are important variables, that by changing them, the surface and volume density can be changed, that can manage the raw material consumption and determine the quality of knit fabrics. Breaking strength and elongation are important and decisive parameters for end uses since low strength properties shorten the useful life time as well disable the functionality of these products. Patterns of influence of structural elements, such as transferred loops on the surface density and volume density of knitwear was established. It is found that offered structures have some advantages to compare to basic structure. On the aim of resource economy technology, they give a possibility of raw material expenditure decreasing 22-47%.


2014 ◽  
Vol 1010-1012 ◽  
pp. 961-965
Author(s):  
Jian Qiang Xiao ◽  
Guo Wei He ◽  
Yan Jin Hu

Bauxite waste sludge as a raw material, the use of reverse chemical coprecipitation synthesize Fe3O4. Researching temperature, precipitation concentration, aging time and Fe2+/Fe3+ molar ratio effect on the particle size, morphology. Optimal experimental conditions: temperature 70 °C, the precipitant NaOH mass ratio of 10%, aging time 3h, Fe2+/Fe3+ molar ratio of 2:3. Test methods using a laser particle size analyzer, XRD analysis of the products were characterized, the product is Fe3O4, the average particle size of 0.11mm.


2016 ◽  
Vol 30 (2) ◽  
pp. 237-243 ◽  
Author(s):  
Karolina Szulc ◽  
Andrzej Lenart

Abstract The paper presents an influence of raw material composition and technological process applied on selected physical properties of food powders. Powdered multi-component nutrients were subjected to the process of mixing, agglomeration, coating, and drying. Wetting liquids ie water and a 15% water lactose solution, were used in agglomeration and coating. The analyzed food powders were characterized by differentiated physical properties, including especially: particle size, bulk density, wettability, and dispersibility. The raw material composition of the studied nutrients exerted a statistically significant influence on their physical properties. Agglomeration as well as coating of food powders caused a significant increase in particle size, decreased bulk density, increased apparent density and porosity, and deterioration in flowability in comparison with non-agglomerated nutrients.


Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 298
Author(s):  
Kun Yu ◽  
Hui-Ming Zhou ◽  
Ke-Xue Zhu ◽  
Xiao-Na Guo ◽  
Wei Peng

Incorporating green tea powder (GTP) into dried noodles enriched the functional characteristics of noodles. To achieve the maximum benefits from GTP, the water cooking stability of dried green tea noodles (DGTN) should be investigated. Indeed, antioxidant activities and phenolic compounds of DGTN after water cooking markedly decreased. The results showed that large GTP particles caused the increased cooking loss of DGTN, but the phenolic compound loss of DGTN prepared with them was low after cooking. Analysis of texture properties and microstructure showed that DGTN with a 2% concentration of large GTP particles formed some holes in the noodles’ network, and its breaking strength decreased. However, we observed that many GTP particles adhered to the surface of DGTN prepared with small GTP particles, and they were easier to lose after water cooking. Comprehensive analysis concluded that cooking loss, functional compounds retention and textural properties of DGTN were related to GTP particle size and concentration via the microstructure.


Sign in / Sign up

Export Citation Format

Share Document