Storage Problems of Poplar Chips from Short Rotation Plantations with Special Emphasis on Fungal Development

2012 ◽  
Vol 8 (1) ◽  
pp. 123-132 ◽  
Author(s):  
Zsuzsanna Horváth ◽  
Béla Marosvölgyi ◽  
Christine Idler ◽  
Ralf Pecenka ◽  
Hannes Lenz

Abstract - There are several problems in storing wood chips freshly harvested from short rotation plantations, which result in quality losses as well as in dry matter and energy losses. The factors influencing the degradation of raw material are examined in this paper with special focus on fungal development. An excessive growth of fungi is connected to dry matter losses and also to an increased health risk during raw material handling. The following factors were measured during 6 months storage of poplar wood chips depending on particle size: box temperature, moisture content, pH-value, appearance of fungi in the storage and the concentration of fungal particles in the air. The results show a close connection between particle size, temperature and attack of fungi. During the storage mesophilic and termophilic species of the genera Alternaria, Aspergillus, Cladosporium, Mucor and Penicillium appeared. The concentration of fungal particles is the highest for fine chips and decreases in bigger particles. There was a special focus on the investigation of the properties of coarse chips (G 50), which represent a good compromise between handling, storage losses and health risk due to fungal development.

2009 ◽  
Vol 33 (6) ◽  
pp. 1855-1862 ◽  
Author(s):  
Valdeci Orioli Júnior ◽  
Edson Luiz Mendes Coutinho

The current high price of KCl and great dependence on importation to satisfy the Brazilian demand indicate the need for studies that evaluate the efficiency of other K sources, particularly those based on domestic raw material. For this purpose, a greenhouse experiment was conducted with samples of a sandy clay loam Typic Haplustox, in a completely randomized 4 x 3 x 2 factorial design: four K rates (0, 60, 120, and 180 mg kg-1), three sources (potassium chloride (KCl), fused magnesium potassium phosphate (FMPP) and a mixture of 70 % FMPP + 30 % KCl) and two particle sizes (100 and 60 mesh), with three replications. Potassium fertilization resulted in significant increases in shoot dry matter production and in K concentrations, both in soil and plants. The K source and particle size had no significant effect on the evaluated characteristics. Potassium critical levels in the soil and the shoots were 1.53 mmol c dm-3 and 19.1 g kg-1, respectively.


2013 ◽  
Vol 774-776 ◽  
pp. 864-867
Author(s):  
Zai Feng Shi ◽  
Su Min Zhang ◽  
Su Guo

To investigate the effects of sol pH value and water content on photocatalytic activity of TiO2 prepared with sol-gel auto-igniting synthesis (SAS) method, TiO(NO3)2 was prepared with TiCl4 as raw material and used as precursor of TiO2. By changing sol pH value and water content, different TiO2 powders were prepared and characterized with XRD, SEM and photodegradation of methylene blue (MB). Results indicated that TiO2 presented the highest photocatalytic activity while sol pH value and mass fraction of water were adjusted to 7 and 50% respectively while the mole ratio of n (TiCl4): n (citric acid): n (ammonium nitrate) was fixed as 1: 1: 3. The TiO2 powders were confirmed as loose and porous anatase type with particle size of 15 nm by SEM and XRD.


1973 ◽  
Vol 53 (1) ◽  
pp. 75-80 ◽  
Author(s):  
R. HIRONAKA ◽  
J. E. MILTIMORE ◽  
J. M. MCARTHUR ◽  
D. R. MCGREGOR ◽  
E. S. SMITH

Some rumen characteristics associated with bloat were measured in identical twin cows fed diets of coarse and fine particle size (geometric mean particle size of 715 and 388 μ). A foamy condition developed in the rumen of all cows fed the fine diet and in one of those fed the coarse diet on the 2nd day of the experiment. In vitro gas production 1 h after feeding was 3.46 ml/h per g dry matter (DM) on fine feed and 2.35 ml/h per g DM on the coarse (P < 0.05). During the 1st week of feeding the pH value of rumen of cows fed the coarse diet was 4.86 and that of cows fed the fine diet was 4.75. During the 2nd week the pH of both were lower at 4.53 and 4.12 (P > 0.05). There was no difference in the numbers of Streptococcus bovis present in the rumen attributable to the particle size of the diet. The number of S. bovis increased with an increasing proportion of concentrate fed until the cows were changed to the all-concentrate diet, when numbers declined sharply to a low level. S. bovis does not appear to be a primary cause of feedlot bloat.


2021 ◽  
Vol 891 (1) ◽  
pp. 012020
Author(s):  
R Pujiarti ◽  
O A Putri

Abstract Coconut (Cocos nucifera Linn.) root can be used as an alternative to natural dyes because it contains color pigments in the form of flavonoids. Extraction of natural dyes is affected by several factors such as the type of solvent, extraction temperature, ratio of solvent and raw material, particle size, stirring, and extraction time. This study ware aims to determine combination factor of the particles size and extraction methods of coconut root dye on the characteristics and colour fastness of the fabric products. The coconut root powder in 60 and 40 mesh sizes were extracted by boiling distilled water and maceration with 70 and 95% ethanol, respectively. The coconut root dye was tested for the color characteristics and the dye solution was applied to the fabric and tested for the color fastness. The results showed that the particle size and extraction methods used had a significant effect on color intensity while pH value and color index were not significantly different. The highest color intensity was 2.044, the effect of temperature at 30 was 1.949, and the effect of temperature at 100°C was 1.920. The pH value of the coconut root dye solution is acidic with an average pH of 5.85 while the color names from the test results using NADIM 2021 produce three color categories, namely foxtrot, tobacco brown, and pale gold. Although it is not significantly affected by the combination of material size factors and the extraction methods of coconut root dye solution, the results of the color fastness test tend to meet the standards of SNI 8302-2016 regarding the quality requirements for the fastness of written batik. The average grey scale value for each test is 3-4 (Good enough), the staining scale value is 4-5 (Good), and the sunlight resistance test value is 4 (Good).


2019 ◽  
Vol 8 (3) ◽  
pp. 232-238
Author(s):  
Sri Wardhani ◽  
◽  
Danar Purwonugroho ◽  
Deka Permatasari ◽  
Darjito Darjito ◽  
...  

Synthesis of alumina has been carried out by utilizing anodized waste as raw material. Anodized waste is a by-product of metal anodizing processes such as aluminium. This study aims to determine the effect of acidity (pH) and aging time on the mass of Al(OH)3 and the property of Al(OH)3 as well as Al2O3 that produced. Anodized waste was deposited into Al(OH)3 and then purified. Alumina synthesized by the sol-gel method with pH variations of 7, 8, 9, and 10 and aging times of 24, 48, and 72 hours. The Al(OH)3, which has been produced, was characterized by PSA and powder XRD spectrophotometer. The results showed that the synthesis of Al(OH)3 was influenced by pH and aging time. It affects the yield and particle size of Al(OH)3. The optimum condition of the synthesis was pH 7 and aging time of 24 hours with yield of 1.85 grams. Characterization by PSA at a current diameter of 90% indicate that higher pH value and longer aging time produces smaller particle size. Characterization by powder XRD shows that the Al(OH)3 has gibbsite crystal phase with d values of 3.360, 3.217, 2.252, 2.029, and 1.649 Å.


Author(s):  
N. Golub ◽  
M. Potapova ◽  
M. Shinkarchuk ◽  
O. Kozlovets

The paper deals with the waste disposal problem of the alcohol industry caused by the widespread use of alcohol as biofuels. In the technology for the production of alcohol from cereal crops, a distillery spent wash (DSW) is formed (per 1 dm3 of alcohol – 10–20 dm3 DSW), which refers to highly concentrated wastewater, the COD value reaches 40 g O2/dm3. Since the existing physical and chemical methods of its processing are not cost-effective, the researchers develop the processing technologies for its utilization, for example, an anaerobic digestion. Apart from the purification of highly concentrated wastewater, the advantage of this method is the production of biogas and highquality fertilizer. The problems of biotechnology for biogas production from the distillery spent wash are its high acidity–pH 3.7–5.0 (the optimum pH value for the methanogenesis process is 6.8–7.4) and low nitrogen content, the lack of which inhibits the development of the association of microorganisms. In order to solve these problems, additional raw materials of various origins (chemical compounds, spent anaerobic sludge, waste from livestock farms, etc.) are used. The purpose of this work is to determine the appropriate ratio of the fermentable mixture components: cosubstrate, distillery spent wash and wastewater of the plant for co-fermentation to produce an energy carrier (biogas) and effective wastewater treatment of the distillery. In order to ensure the optimal pH for methanogenesis, poultry manure has been used as a co-substrate. The co-fermentation process of DSW with manure has been carried out at dry matter ratios of 1:1, 1:3, 1:5, 1:7 respectively. It is found that when the concentration of manure in the mixture is insufficient (DSW/manure – 1:1, 1:3), the pH value decreases during fermentation which negatively affects methane formation; when the concentration of manure in the mixture is increased (DSW/manure – 1:5, 1:7), the process is characterized by a high yield of biogas and methane content. The maximum output of biogas with a methane concentration of 70 ± 2% is observed at the ratio of components on a dry matter “wastewater: DSW: manure” – 0,2:1:7 respectively. The COD reduction reaches a 70% when using co-fermentation with the combination of components “wastewater: DSW: manure” (0,3:1:5) respectively.


2020 ◽  
Vol 5 (3) ◽  
pp. 179-184
Author(s):  
Marianna Havryshko ◽  
◽  
Olena Popovych ◽  
Halyna Yaremko ◽  
◽  
...  

At the present stage of development, the entire world industry has faced the problem of rational use of renewable natural resources, in particular the most efficient ways of wastewater treatment and the use of accumulated waste in the production process as a secondary raw material. In particular, the alcohol industry, as one of the components of food, medical, chemical and various industries,leads to the formation of huge amounts of waste, including wastewater. The food industry, like any other industry, has a negative impact on the environment. Water bodies are the most affected by the food industry. Almost the first place in terms of water consumption per unit of production is the production of alcohol. Consumption of large amounts of water leads to the formation of wastewater, which is highly polluted and adversely affects the environment. Due to the high chemical and biological consumption of oxygen, specific color and odor, suspended solids, low pH value, the purification of such waste in the filtration fields and discharge into water bodies is not possible. The purpose of our work is: 1) conducting the analysis of the alcohol industry potential in Ukraine in recent years, and methods of waste disposal as a potential source for the development of bioenergy. 2) environmental aspects of the alcohol industry modernization at present stage of development and implementation of modern wastewater treatment technologies.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 661
Author(s):  
Martin Meiller ◽  
Jürgen Oischinger ◽  
Robert Daschner ◽  
Andreas Hornung

The heterogeneity of biogenic fuels, and especially biogenic residues with regard to water and ash content, particle size and particle size distribution is challenging for biomass combustion, and limits fuel flexibility. Online fuel characterization as a part of process control could help to optimize combustion processes, increase fuel flexibility and reduce emissions. In this research article, a concept for a new sensor module is presented and first tests are displayed to show its feasibility. The concept is based on the principle of hot air convective drying. The idea is to pass warm air with 90 °C through a bulk of fuel like wood chips and measure different characteristics such as moisture, temperatures and pressure drop over the bulk material as a function over time. These functions are the basis to draw conclusions and estimate relevant fuel properties. To achieve this goal, a test rig with a volume of 0.038 m3 was set up in the laboratory and a series of tests was performed with different fuels (wood chips, saw dust, wood pellets, residues from forestry, corn cobs and biochar). Further tests were carried out with conditioned fuels with defined water and fines contents. The experiments show that characteristic functions arise over time. The central task for the future will be to assign these functions to specific fuel characteristics. Based on the data, the concept for a software for an automated, data-based fuel detection system was designed.


Sign in / Sign up

Export Citation Format

Share Document