scholarly journals Systematic histopathological analysis of different 5-aminolevulinic acid–induced fluorescence levels in newly diagnosed glioblastomas

2018 ◽  
Vol 129 (2) ◽  
pp. 341-353 ◽  
Author(s):  
Barbara Kiesel ◽  
Mario Mischkulnig ◽  
Adelheid Woehrer ◽  
Mauricio Martinez-Moreno ◽  
Matthias Millesi ◽  
...  

OBJECTIVEGlioblastoma (GBM) is characterized by distinct intratumoral histopathological heterogeneity with regard to variable tumor morphology, cell proliferation, and microvascularity. Maximum resection of a GBM results in an improved prognosis and thus represents the aim of surgery in the majority of cases. Fluorescence-guided surgery using 5-aminolevulinic acid (5-ALA) is currently widely applied for improved intraoperative tumor visualization in patients with a GBM. Three intratumoral fluorescence levels (i.e., strong, vague, or no fluorescence) can usually be distinguished during surgery. So far, however, their exact histopathological correlates and their surgical relevance have not been clarified sufficiently. Thus, the aim of this study was to systematically analyze tissue samples from newly diagnosed GBMs with different fluorescence levels according to relevant histopathological parameters.METHODSThis prospective study recruited patients who underwent 5-ALA fluorescence-guided resection of a newly diagnosed radiologically suspected GBM. Each patient received 5-ALA approximately 3 hours before surgery, and a modified neurosurgical microscope was applied for intraoperative visualization of 5-ALA–induced fluorescence. During surgery, tissue samples with strong, vague, or no fluorescence were collected. For each sample, the presence of tumor tissue, quality of tissue (compact, infiltrative, or no tumor), histopathological criteria of malignancy (cell density, nuclear pleomorphism, mitotic activity, and presence of microvascular proliferation/necrosis), proliferation rate (MIB-1 labeling index [LI]), and microvessel density (using CD34 staining) were investigated.RESULTSAltogether, 77 patients with a newly diagnosed, histopathologically confirmed GBM were included, and 131 samples with strong fluorescence, 69 samples with vague fluorescence, and 67 samples with no fluorescence were collected. Tumor tissue was detected in all 131 (100%) of the samples with strong fluorescence and in 65 (94%) of the 69 samples with vague fluorescence. However, mostly infiltrative tumor tissue was still found in 33 (49%) of 67 samples despite their lack of fluorescence. Strong fluorescence corresponded to compact tumors in 109 (83%) of 131 samples, whereas vague fluorescence was consistent with infiltrative tumors in 44 (64%) of 69 samples. In terms of the histopathological criteria of malignancy, a significant positive correlation of all analyzed parameters comprising cell density, nuclear pleomorphism, mitotic activity, microvascular proliferation, and necrosis with the 3 fluorescence levels was observed (p < 0.001). Furthermore, the proliferation rate significantly and positively correlated with strong (MIB-1 LI 28.3%), vague (MIB-1 LI 16.7%), and no (MIB-1 LI 8.8%) fluorescence (p < 0.001). Last, a significantly higher microvessel density was detected in samples with strong fluorescence (CD34 125.5 vessels/0.25 mm2) than in those with vague (CD34 82.8 vessels/0.25 mm2) or no (CD34 68.6 vessels/0.25 mm2) fluorescence (p < 0.001).CONCLUSIONSStrong and vague 5-ALA–induced fluorescence enables visualization of intratumoral areas with specific histopathological features and thus supports neurosurgeons in improving the extent of resection in patients with a newly diagnosed GBM. Despite the lack of fluorescence, tumor tissue was still observed in approximately half of the cases. To overcome this current limitation, the promising approach of complementary spectroscopic measurement of fluorescence should be investigated further.

2007 ◽  
Vol 106 (6) ◽  
pp. 1070-1074 ◽  
Author(s):  
Yoshinaga Kajimoto ◽  
Toshihiko Kuroiwa ◽  
Shin-Ichi Miyatake ◽  
Tsugumichi Ichioka ◽  
Minoru Miyashita ◽  
...  

✓It has been established that fluorescence-guided resection using 5-aminolevulinic acid (5-ALA) is useful in glioma surgery. The authors report on a 65-year-old woman who had a huge atypical left-hemisphere meningioma, which extended into the skull and to the superior sagittal sinus and demonstrated fluorescence in response to administration of 5-ALA. After the tumor was removed, the operative field was observed under the fluorescent mode of a fluorescence surgical microscopy system. Several minute areas of residual tumor tissue were visualized as strong fluorescence behind the vein and sinus, in a part of the hypertrophic dura, and along the edge of the skull. These remnants were completely removed. The authors concluded that fluorescence-guided resection using 5-ALA is useful in cases of atypical meningiomas with a high risk of recurrence.


2020 ◽  
Vol 15 ◽  
Author(s):  
Zheng Jiang ◽  
Hui Liu ◽  
Siwen Zhang ◽  
Jia Liu ◽  
Weitao Wang ◽  
...  

Background: Microsatellite instability (MSI) is a prognostic biomarker used to guide medication selection in multiple cancers, such as colorectal cancer. Traditional PCR with capillary electrophoresis and next-generation sequencing using paired tumor tissue and leukocyte samples are the main approaches for MSI detection due to their high sensitivity and specificity. Currently, patient tissue samples are obtained through puncture or surgery, which causes injury and risk of concurrent disease, further illustrating the need for MSI detection by liquid biopsy. Methods: We propose an analytic method using paired plasma/leukocyte samples and MSI detection using next-generation sequencing technology. Based on the theoretical progress of oncogenesis, we hypothesized that the microsatellite site length in plasma equals the combination of the distribution of tumor tissue and leukocytes. Thus, we defined a window-judgement method to identify whether biomarkers were stable. Results: Compared to traditional PCR as the standard, we evaluated three methods in 20 samples (MSI-H:3/MSS:17): peak shifting method using tissue vs. leukocytes, peak shifting method using plasma vs. leukocytes, and our method using plasma vs. leukocytes. Compared to traditional PCR, we observed a sensitivity of 100%, 0%, and 100%, and a specificity of 100.00%, 94.12%, and 88.24%, respectively. Conclusion: Our method has the advantage of possibly detecting MSI in a liquid biopsy and provides a novel direction for future studies to increase the specificity of the method.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Stine Karlsen Oversoe ◽  
Michelle Simone Clement ◽  
Britta Weber ◽  
Henning Grønbæk ◽  
Stephen Jacques Hamilton-Dutoit ◽  
...  

Abstract Background and aims Studies suggest that mutations in the CTNNB1 gene are predictive of response to immunotherapy, an emerging therapy for advanced hepatocellular carcinoma (HCC). Analysis of circulating tumor DNA (ctDNA) offers the possibility of serial non-invasive mutational profiling of tumors. Combining tumor tissue and ctDNA analysis may increase the detection rate of mutations. This study aimed to evaluate the frequency of the CTNNB1 p.T41A mutation in ctDNA and tumor samples from HCC patients and to evaluate the concordance rates between plasma and tissue. We further evaluated changes in ctDNA after various HCC treatment modalities and the impact of the CTNNB1 p.T41A mutation on the clinical course of HCC. Methods We used droplet digital PCR to analyze plasma from 95 patients and the corresponding tumor samples from 37 patients during 3 years follow up. Results In tumor tissue samples, the mutation rate was 8.1% (3/37). In ctDNA from HCC patients, the CTNNB1 mutation rate was 9.5% (9/95) in the pre-treatment samples. Adding results from plasma analysis to the subgroup of patients with available tissue samples, the mutation detection rate increased to 13.5% (5/37). There was no difference in overall survival according to CTNNB1 mutational status. Serial testing of ctDNA suggested a possible clonal evolution of HCC or arising multicentric tumors with separate genetic profiles in individual patients. Conclusion Combining analysis of ctDNA and tumor tissue increased the detection rate of CTNNB1 mutation in HCC patients. A liquid biopsy approach may be useful in a tailored therapy of HCC.


2004 ◽  
Vol 128 (8) ◽  
pp. 893-896 ◽  
Author(s):  
Ying Cao ◽  
Gladell P. Paner ◽  
Leonard B. Kahn ◽  
Prabha B. Rajan

Abstract Context.—Angiogenesis and the cell proliferation index can predict the prognosis of invasive breast carcinoma; however, little is known of their roles in noninvasive tumor. Objective.—To investigate the correlation of microvessel density and cell proliferation index with other histologic parameters (histologic type, nuclear grade, and mitotic count) in 65 cases of noninvasive carcinoma of the breast. Design.—Formalin-fixed, paraffin-embedded tissues from 65 cases of carcinoma in situ of the breast were immunostained with antibody against factor VIII antigen and proliferation-associated nuclear antigen MIB-1. The microvessel density was measured by counting the total number of microvessels around the carcinoma in situ per 10 low-power microscopic fields. The cell proliferation index was calculated by counting MIB-1–positive nuclei in 100 tumor cells. A χ2 test and Spearman rank correlation test were used for statistical analysis. Results.—The microvessel density and cell proliferation index of comedo-type, high-nuclear-grade ductal carcinomas in situ are significantly higher than those of either noncomedo type ductal carcinomas in situ or lobular carcinoma in situ (P &lt; .001). Conclusions.—Angiogenesis and the cell proliferation index are active biological processes and may be considered as markers to separate low- and high-risk patients with noninvasive breast carcinomas.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii165-ii165
Author(s):  
Hao Duan ◽  
Zhenqiang He ◽  
Zhenghe Chen ◽  
Yonggao Mou

Abstract Cerebrospinal fluid (CSF) has been demonstrated as a better source of circulating tumor DNA (ctDNA) than plasma for brain tumors. However, it is unclear whether whole exome sequencing (WES) is qualified for detection of ctDNA in CSF. The aim of this study was to determine if assessment of ctDNA in CSF by WES is a feasible approach to detect genomic alterations of glioblastoma. CSFs of ten glioblastoma patients were collected pre-operatively at the Department of Neurosurgery, Sun Yat-sen University Cancer Center. ctDNA in CSF and genome DNA in the resected tumor were extracted and subjected to WES. The identified glioblastoma-associated mutations from ctDNA in CSF and genome DNA in the resected tumor were compared. Due to the ctDNA in CSF was unqualified for exome sequencing for one patient, nine patients were included into the final analysis. More glioblastoma-associated mutations tended to be detected in CSF comparing with the corresponding tumor tissue samples (3.56±0.75 vs. 2.22±0.32, P=0.097), while the statistical significance was limited by the small sample size. The average mutation frequencies were similar in CSF and tumor tissue samples (74.12% ± 6.03% vs. 73.83% ± 5.95%, P = 0.924). The R132H mutation of isocitrate dehydrogenase 1 and the G34V mutation of H3F3A which had been reported in the pathological diagnoses were also detected from ctDNA in CSF by WES. Patients who received temozolomide chemotherapy previously or those whose tumor involved subventricular zone tended to harbor more mutations in their CSF. Assessment of ctDNA in CSF by WES is a feasible approach to detect genomic alterations of glioblastoma, which may provide useful information for the decision of treatment strategy.


2012 ◽  
Vol 35 (3) ◽  
pp. 381-391 ◽  
Author(s):  
Georg Widhalm ◽  
Georgi Minchev ◽  
Adelheid Woehrer ◽  
Matthias Preusser ◽  
Barbara Kiesel ◽  
...  

2011 ◽  
Vol 123 (2) ◽  
pp. 223-233 ◽  
Author(s):  
David Capper ◽  
Anna Sophie Berghoff ◽  
Manuel Magerle ◽  
Aysegül Ilhan ◽  
Adelheid Wöhrer ◽  
...  

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi15-vi15
Author(s):  
Stephen J Bagley ◽  
Jacob Till ◽  
Aseel Abdalla ◽  
MacLean Nasrallah ◽  
Tomer Lauterman ◽  
...  

Abstract BACKGROUND Plasma circulating tumor DNA (ctDNA) is rarely detectable by traditional methods in patients with GBM. As a result, unlike in lung and other cancers, serial next generation sequencing of ctDNA for monitoring GBM tumor burden has been challenging. In light of the low tumor fraction (TF) of DNA fragments in GBM patient plasma and the urgent need to improve upon MRI for tracking GBM tumor burden, we conducted a pilot study in patients with newly diagnosed GBM using the C2 intelligence platform (C2i Genomics), which leverages genome-wide mutational integration for highly sensitive ctDNA detection. METHODS Plasma was collected pre- and post-operatively in patients with newly diagnosed GBM undergoing surgical resection/biopsy. cfDNA was extracted, quantified, and analyzed for fragment size. Genomic DNA (gDNA) was extracted from matched tumor tissue. Whole genome sequencing (WGS) was performed on both gDNA and cfDNA. A specific copy number alteration (CNA) compendium was created for each patient to generate a readout of TF (Zviran, Nat Medicine 2020). We assessed the association between TF at post-operative day 1 (a surrogate for residual disease) and OS, adjusting for other prognostic factors using Cox regression. RESULTS 37 patients were enrolled. For samples with high tumor fraction (n=5), a statistically significant (p&lt; 1e-4) correlation between CNA profiles of tumor tissue and plasma samples was observed. Post-operative TF above the median value was associated with inferior OS (median 7.7 vs. 19.3 months, p=0.019). This association persisted after adjusting for age, O6-methylguanine-DNA methyltransferase methylation status, extent of resection, and performance status (adjusted HR 2.5, 95% CI 1.1-5.6, p=0.03). CONCLUSION Genome-wide mutational integration enables ultra-sensitive detection of ctDNA in GBM patient plasma. Post-operative TF measured by the C2i test is independently associated with OS in newly diagnosed GBM, providing the foundation to evaluate this technology for personalized prognostication and disease monitoring.


2021 ◽  
Author(s):  
Gelena Kakurina ◽  
Olga V Cheremisina ◽  
Elena E Sereda ◽  
Elena S Kolegova ◽  
Irina V Kondakova ◽  
...  

Abstract Purpose: Actin-binding proteins (ABPs) and various signaling systems are involved in the metastasis of squamous cell carcinoma of the larynx and hypopharynx (SCCLH). The clinical significance of these proteins has not yet been determined. We analyzed the relationship between the mRNA level of cofilin 1 (CFL1), profilin 1 (PFN1), adenylyl cyclase-associated protein 1 (CAP1), SNAIL and RND3 with metastasis in the SCCLH tissue. The serum level of the listed ABPs was estimated and the relationship of them with the expression of the corresponding mRNA was carried out. Materials and methods: The expression level of ABPs mRNA was measured by real-time RT-PCR in paired tissue samples taken from 54 patients with SCCLH (T 1-4 N 0-1 M 0 ). Expression analysis was performed using the 2 - ΔΔ CT method. The level of ABPs in the blood serum was measured by ELISA. Statistical analysis was carried out using the SPSS Statistica 20.0 software package. Results: The mRNA expression of the studied genes in tumor tissue of patients with SCCLH T 1-3 N 0 M 0 and T 2-4 N 1-2 M 0 did not differ significantly. High expression of RND3 mRNA was accompanied by an increase in mRNA expression of all studied ABPs. In the blood serum of T 2-4 N 1-2 M 0 patients the level of PFN1 was significantly lower by 21% and the level of CAP1 was higher by 75% compared with the group of patients with T 1-4 N 0 M 0 stage. Conclusion: According to our data RND3 is involved in the regulation of molecular cascades SCCLH metastasis. PFN1 and CAP1 serum level can be a good classifier of metastases in patients with SCCLH.


Sign in / Sign up

Export Citation Format

Share Document