Method of localization of agricultural robotic vehicles using AESA established by an UAV complex

2021 ◽  
Vol 9 (2) ◽  
pp. 112-120
Author(s):  
Aleksandr Denisov

This paper considers a relevant method to ensure communication and object location in vast agricultural areas. To solve this problem an operational scenario was proposed, an approach, involving a complex of several UAVs, which establish an AESA; an algorithm for building an optimal path, along which the UAV complex moves, formulas for calculating AESA direction pattern for linear and flat formations of UAV groups, formulas for calculating time, required for terrain scanning with various areas. In such complex on each UAV an antenna with phase shifter is mounted. The paper also considers modeling and comparison of different approaches to motion of an UAV complex for terrain scanning. Due to application of active electronically scanned arrays, the proposed localization method is characterized by high noise immunity, is better shielded from noise, less dependent on weather conditions and appliable at night time. Unlike other methods, it supports wide-range transmission and reception of data. Thereby, application of AESA makes this method robust and practical for localization and communication establishment, whereas the proposed algorithm for building of optimal path, along which the robotic complex moves, enables to reduce time, required for area scanning. Consequently, this method allows achieving the shortest distance that the UAV complex has to cover.

Author(s):  
Anthony S-Y Leong ◽  
David W Gove

Microwaves (MW) are electromagnetic waves which are commonly generated at a frequency of 2.45 GHz. When dipolar molecules such as water, the polar side chains of proteins and other molecules with an uneven distribution of electrical charge are exposed to such non-ionizing radiation, they oscillate through 180° at a rate of 2,450 million cycles/s. This rapid kinetic movement results in accelerated chemical reactions and produces instantaneous heat. MWs have recently been applied to a wide range of procedures for light microscopy. MWs generated by domestic ovens have been used as a primary method of tissue fixation, it has been applied to the various stages of tissue processing as well as to a wide variety of staining procedures. This use of MWs has not only resulted in drastic reductions in the time required for tissue fixation, processing and staining, but have also produced better cytologic images in cryostat sections, and more importantly, have resulted in better preservation of cellular antigens.


2020 ◽  
Vol 12 (4) ◽  
pp. 348-352
Author(s):  
S. Malchev ◽  
S. Savchovska

Abstract. The periods with continuous freezing air temperatures reported during the spring of 2020 (13 incidents) affected a wide range of local and introduced sweet cherry cultivars in the region of Plovdiv. They vary from -0.6°C on March 02 to -4.9°C on March 16-17. The duration of influence of the lowest temperatures is 6 and 12 hours between March 16 and 17. The inspection of fruit buds and flowers was conducted twice (on March 26 and April 08) at different phenological stages after continuous waves of cold weather conditions alternated with high temperatures. During the phenological phase ‘bud burst’ (tight cluster or BBCH 55) some of the flowers in the buds did not develop further making the damage hardly detectable. The most damaged are hybrid El.28-21 (95.00%), ‘Van’ (91.89%) and ‘Bing’ (89.41%) and from the next group ‘Lapins’ (85.98%) and ‘Rosita’ (83.33%). A larger intermediate group form ‘Kossara’ (81.67%), ‘Rozalina’ (76.00%), ‘Sunburst’ (75.00%), ‘Bigarreau Burlat’ (69.11%) and ‘Kuklenska belitza’ (66.67%). Candidate-cultivar El.17-90 ‘Asparuh’ has the lowest frost damage values of 55.00% and El.17-37 ‘Tzvetina’ with damage of 50.60%.


Author(s):  
Trần Thanh Nhàn

In order to observe the end of primary consolidation (EOP) of cohesive soils with and without subjecting to cyclic loading, reconstituted specimens of clayey soils at various Atterberg’s limits were used for oedometer test at different loading increments and undrained cyclic shear test followed by drainage with various cyclic shear directions and a wide range of shear strain amplitudes. The pore water pressure and settlement of the soils were measured with time and the time to EOP was then determined by different methods. It is shown from observed results that the time to EOP determined by 3-t method agrees well with the time required for full dissipation of the pore water pressure and being considerably larger than those determined by Log Time method. These observations were then further evaluated in connection with effects of the Atterberg’s limit and the cyclic loading history.


2013 ◽  
Vol 16 (1) ◽  
pp. 59-67

<p>The Soil Science Institute of Thessaloniki produces new digitized Soil Maps that provide a useful electronic database for the spatial representation of the soil variation within a region, based on in situ soil sampling, laboratory analyses, GIS techniques and plant nutrition mathematical models, coupled with the local land cadastre. The novelty of these studies is that local agronomists have immediate access to a wide range of soil information by clicking on a field parcel shown in this digital interface and, therefore, can suggest an appropriate treatment (e.g. liming, manure incorporation, desalination, application of proper type and quantity of fertilizer) depending on the field conditions and cultivated crops. A specific case study is presented in the current work with regards to the construction of the digitized Soil Map of the regional unit of Kastoria. The potential of this map can easily be realized by the fact that the mapping of the physicochemical properties of the soils in this region provided delineation zones for differential fertilization management. An experiment was also conducted using remote sensing techniques for the enhancement of the fertilization advisory software database, which is a component of the digitized map, and the optimization of nitrogen management in agricultural areas.</p>


Author(s):  
Ireneusz Cymes ◽  
Iwona Cymes ◽  
Ewa Dragańska ◽  
Sławomir Szymczyk

The influence of weather conditions on mid-field ponds situated in a reclaimed area in Sępopolska PlainThe investigations were conducted in northeastern Poland near Lidzbark Warmiński (54° 08" N, 20° 36" E). Five mid-field ponds situated on grasslands were chosen: four of them were dredged and deepened, and one of them remained as a natural reservoir. The aim of this paper was to assess the influence of weather conditions on the quantity and quality of water in mid-field ponds situated in agricultural areas. It was found that the quantity of water in mid-field ponds was related much more to the air temperature, which was responsible for either water evaporation or snow melting, rather than to the amount of precipitation. The reduction in the volume of water stored in the ponds during very dry years had a negative influence on its quality. During the observation period, the dredged ponds were characterized by permanent water tables, whereas the natural reservoir dried out in very dry years. Atmospheric conditions influenced the concentrations of ammonium nitrogen and calcium and chlorine ions in the studied water bodies. The volume of water retained in mid-field ponds influenced the concentrations of phosphorus and sulphates. Increased precipitation sums caused lower water pH; however in warmer periods, at increased pH and COD


2014 ◽  
Vol 660 ◽  
pp. 971-975 ◽  
Author(s):  
Mohd Norzaim bin Che Ani ◽  
Siti Aisyah Binti Abdul Hamid

Time study is the process of observation which concerned with the determination of the amount of time required to perform a unit of work involves of internal, external and machine time elements. Originally, time study was first starting to be used in Europe since 1760s in manufacturing fields. It is the flexible technique in lean manufacturing and suitable for a wide range of situations. Time study approach that enable of reducing or minimizing ‘non-value added activities’ in the process cycle time which contribute to bottleneck time. The impact on improving process cycle time for organization that it was increasing the productivity and reduce cost. This project paper focusing on time study at selected processes with bottleneck time and identify the possible root cause which was contribute to high time required to perform a unit of work.


Plant Disease ◽  
2012 ◽  
Vol 96 (7) ◽  
pp. 935-942 ◽  
Author(s):  
Toky Rakotonindraina ◽  
Jean-Éric Chauvin ◽  
Roland Pellé ◽  
Robert Faivre ◽  
Catherine Chatot ◽  
...  

The Shtienberg model for predicting yield loss caused by Phytophthora infestans in potato was developed and parameterized in the 1990s in North America. The predictive quality of this model was evaluated in France for a wide range of epidemics under different soil and weather conditions and on cultivars different than those used to estimate its parameters. A field experiment was carried out in 2006, 2007, 2008, and 2009 in Brittany, western France to assess late blight severity and yield losses. The dynamics of late blight were monitored on eight cultivars with varying types and levels of resistance. The model correctly predicted relative yield losses (efficiency = 0.80, root mean square error of prediction = 13.25%, and bias = –0.36%) as a function of weather and the observed disease dynamics for a wide range of late blight epidemics. In addition to the evaluation of the predictive quality of the model, this article provides a dataset that describes the development of various late blight epidemics on potato as a function of weather conditions, fungicide regimes, and cultivar susceptibility. Following this evaluation, the Shtienberg model can be used with confidence in research and development programs to better manage potato late blight in France.


2020 ◽  
Vol 41 (S1) ◽  
pp. s69-s70
Author(s):  
Angie Dains ◽  
Michael Edmond ◽  
Daniel Diekema ◽  
Stephanie Holley ◽  
Oluchi Abosi ◽  
...  

Background: Including infection preventionists (IPs) in hospital design, construction, and renovation projects is important. According to the Joint Commission, “Infection control oversights during building design or renovations commonly result in regulatory problems, millions lost and even patient deaths.” We evaluated the number of active major construction projects at our 800-bed hospital with 6.0 IP FTEs and the IP time required for oversight. Methods: We reviewed construction records from October 2018 through October 2019. We classified projects as active if any construction occurred during the study period. We describe the types of projects: inpatient, outpatient, non–patient care, and the potential impact to patient health through infection control risk assessments (ICRA). ICRAs were classified as class I (non–patient-care area and minimal construction activity), class II (patients are not likely to be in the area and work is small scale), class III (patient care area and work requires demolition that generates dust), and class IV (any area requiring environmental precautions). We calculated the time spent visiting construction sites and in design meetings. Results: During October 2018–October 2019, there were 51 active construction projects with an average of 15 active sites per week. These sites included a wide range of projects from a new bone marrow transplant unit, labor and delivery expansion and renovation, space conversion to an inpatient unit to a project for multiple air handler replacements. All 51 projects were classified as class III or class IV. We visited, on average, 4 construction sites each week for 30 minutes per site, leaving 11 sites unobserved due to time constraints. We spent an average of 120 minutes weekly, but 450 minutes would have been required to observe all 15 sites. Yearly, the required hours to observe these active construction sites once weekly would be 390 hours. In addition to the observational hours, 124 hours were spent in design meetings alone, not considering the preparation time and follow-up required for these meetings. Conclusions: In a large academic medical center, IPs had time available to visit only a quarter of active projects on an ongoing basis. Increasing dedicated IP time in construction projects is essential to mitigating infection control risks in large hospitals.Funding: NoneDisclosures: None


2021 ◽  
Vol 7 (3) ◽  
pp. 52
Author(s):  
Yazan Hamzeh ◽  
Samir A. Rawashdeh

Research on the effect of adverse weather conditions on the performance of vision-based algorithms for automotive tasks has had significant interest. It is generally accepted that adverse weather conditions reduce the quality of captured images and have a detrimental effect on the performance of algorithms that rely on these images. Rain is a common and significant source of image quality degradation. Adherent rain on a vehicle’s windshield in the camera’s field of view causes distortion that affects a wide range of essential automotive perception tasks, such as object recognition, traffic sign recognition, localization, mapping, and other advanced driver assist systems (ADAS) and self-driving features. As rain is a common occurrence and as these systems are safety-critical, algorithm reliability in the presence of rain and potential countermeasures must be well understood. This survey paper describes the main techniques for detecting and removing adherent raindrops from images that accumulate on the protective cover of cameras.


2021 ◽  
Author(s):  
Kyle M Lewald ◽  
Antoine Abrieux ◽  
Derek A Wilson ◽  
Yoosook Lee ◽  
William R Conner ◽  
...  

Drosophila suzukii, or spotted-wing drosophila, is now an established pest in many parts of the world, causing significant damage to numerous fruit crop industries. Native to East Asia, D. suzukii infestations started in the United States a decade ago, occupying a wide range of climates. To better understand invasion ecology of this pest, knowledge of past migration events, population structure, and genetic diversity is needed. To improve on previous studies examining genetic structure of D. suzukii, we sequenced whole genomes of 237 individual flies collected across the continental U.S., as well as several representative sites in Europe, Brazil, and Asia, to identify hundreds of thousands of genetic markers for analysis. We analyzed these markers to detect population structure, to reconstruct migration events, and to estimate genetic diversity and differentiation within and among the continents. We observed strong population structure between West and East Coast populations in the U.S., but no evidence of any population structure North to South, suggesting there is no broad-scale adaptations occurring in response to the large differences in regional weather conditions. We also find evidence of repeated migration events from Asia into North America have provided increased levels of genetic diversity, which does not appear to be the case for Brazil or Europe. This large genomic dataset will spur future research into genomic adaptations underlying D. suzukii pest activity and development of novel control methods for this agricultural pest.


Sign in / Sign up

Export Citation Format

Share Document