scholarly journals Glacier velocity measurements in the eastern Yigong Zangbo basin, Tibet, China

2013 ◽  
Vol 59 (218) ◽  
pp. 1060-1068 ◽  
Author(s):  
Chang-Qing Ke ◽  
Cheng Kou ◽  
Ralf Ludwig ◽  
Xiang Qin

AbstractWe apply the feature-tracking method to L-band synthetic aperture radar (SAR) images to derive detailed motion patterns of glaciers in the Yigong Zangbo basin during summer 2007. The results indicate that the flow patterns are generally constrained by the valley geometry and terrain complexity. The mean velocities of the 12 glaciers were 15–206 m a−1,with a maximum of 423 m a−1 for Glacier No. 5a. The majority of the glaciers exhibited high and low velocities in their upper and lower sections, respectively. The glacier area ranges from 3 to 42 km2. It is found that velocity shows a positive correlation with the glacier area and length. Many small-scale temporal/spatial variations in the glacier flow patterns were observed along the central glacier flowline.

2019 ◽  
Vol 11 (10) ◽  
pp. 1151
Author(s):  
Teodor Nagy ◽  
Liss M. Andreassen ◽  
Robert A. Duller ◽  
Pablo J. Gonzalez

Satellite imagery represents a unique opportunity to quantify the spatial and temporal changes of glaciers world-wide. Glacier velocity has been measured from repeat satellite scenes for decades now, yet a range of satellite missions, feature tracking programs, and user approaches have made it a laborious task. To date, there has been no tool developed that would allow a user to obtain displacement maps of any specified glacier simply by establishing the key temporal, spatial and feature tracking parameters. This work presents the application and development of a unique, semi-automatic, open-source, flexible processing toolbox for the retrieval of displacement maps with a focus on obtaining glacier surface velocities. SenDiT combines the download, pre-processing, feature tracking, and postprocessing of the highest resolution Sentinel-2A and Sentinel-2B satellite images into a semi-automatic toolbox, leaving a user with a set of rasterized and georeferenced glacier flow magnitude and direction maps for their further analyses. The solution is freely available and is tailored so that non-glaciologists and people with limited geographic information system (GIS) knowledge can also benefit from it. The system can be used to provide both regional and global sets of ice velocities. The system was tested and applied on a range of glaciers in mainland Norway, Iceland, Greenland and New Zealand. It was also tested on areas of stable terrain in Libya and Australia, where sources of error involved in the feature tracking using Sentinel-2 imagery are thoroughly described and quantified.


2020 ◽  
Vol 84 ◽  
pp. 127-140
Author(s):  
BM Gaas ◽  
JW Ammerman

Leucine aminopeptidase (LAP) is one of the enzymes involved in the hydrolysis of peptides, and is sometimes used to indicate potential nitrogen limitation in microbes. Small-scale variability has the potential to confound interpretation of underlying patterns in LAP activity in time or space. An automated flow-injection analysis instrument was used to address the small-scale variability of LAP activity within contiguous regions of the Hudson River plume (New Jersey, USA). LAP activity had a coefficient of variation (CV) of ca. 0.5 with occasional values above 1.0. The mean CVs for other biological parameters—chlorophyll fluorescence and nitrate concentration—were similar, and were much lower for salinity. LAP activity changed by an average of 35 nmol l-1 h-1 at different salinities, and variations in LAP activity were higher crossing region boundaries than within a region. Differences in LAP activity were ±100 nmol l-1 h-1 between sequential samples spaced <10 m apart. Variogram analysis indicated an inherent spatial variability of 52 nmol l-1 h-1 throughout the study area. Large changes in LAP activity were often associated with small changes in salinity and chlorophyll fluorescence, and were sensitive to the sampling frequency. This study concludes that LAP measurements in a sample could realistically be expected to range from zero to twice the average, and changes between areas or times should be at least 2-fold to have some degree of confidence that apparent patterns (or lack thereof) in activity are real.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 568
Author(s):  
Sabine G. Gebhardt-Henrich ◽  
Ariane Stratmann ◽  
Marian Stamp Dawkins

Group level measures of welfare flocks have been criticized on the grounds that they give only average measures and overlook the welfare of individual animals. However, we here show that the group-level optical flow patterns made by broiler flocks can be used to deliver information not just about the flock averages but also about the proportion of individuals in different movement categories. Mean optical flow provides information about the average movement of the whole flock while the variance, skew and kurtosis quantify the variation between individuals. We correlated flock optical flow patterns with the behavior and welfare of a sample of 16 birds per flock in two runway tests and a water (latency-to-lie) test. In the runway tests, there was a positive correlation between the average time taken to complete the runway and the skew and kurtosis of optical flow on day 28 of flock life (on average slow individuals came from flocks with a high skew and kurtosis). In the water test, there was a positive correlation between the average length of time the birds remained standing and the mean and variance of flock optical flow (on average, the most mobile individuals came from flocks with the highest mean). Patterns at the flock level thus contain valuable information about the activity of different proportions of the individuals within a flock.


2021 ◽  
Vol 9 (6) ◽  
pp. 585
Author(s):  
Minghao Wu ◽  
Leen De Vos ◽  
Carlos Emilio Arboleda Chavez ◽  
Vasiliki Stratigaki ◽  
Maximilian Streicher ◽  
...  

The present work introduces an analysis of the measurement and model effects that exist in monopile scour protection experiments with repeated small scale tests. The damage erosion is calculated using the three dimensional global damage number S3D and subarea damage number S3D,i. Results show that the standard deviation of the global damage number σ(S3D)=0.257 and is approximately 20% of the mean S3D, and the standard deviation of the subarea damage number σ(S3D,i)=0.42 which can be up to 33% of the mean S3D. The irreproducible maximum wave height, chaotic flow field and non-repeatable armour layer construction are regarded as the main reasons for the occurrence of strong model effects. The measurement effects are limited to σ(S3D)=0.039 and σ(S3D,i)=0.083, which are minor compared to the model effects.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Ivana Sušanj ◽  
Nevenka Ožanić ◽  
Ivan Marović

In some situations, there is no possibility of hazard mitigation, especially if the hazard is induced by water. Thus, it is important to prevent consequences via an early warning system (EWS) to announce the possible occurrence of a hazard. The aim and objective of this paper are to investigate the possibility of implementing an EWS in a small-scale catchment and to develop a methodology for developing a hydrological prediction model based on an artificial neural network (ANN) as an essential part of the EWS. The methodology is implemented in the case study of the Slani Potok catchment, which is historically recognized as a hazard-prone area, by establishing continuous monitoring of meteorological and hydrological parameters to collect data for the training, validation, and evaluation of the prediction capabilities of the ANN model. The model is validated and evaluated by visual and common calculation approaches and a new evaluation for the assessment. This new evaluation is proposed based on the separation of the observed data into classes based on the mean data value and the percentages of classes above or below the mean data value as well as on the performance of the mean absolute error.


1989 ◽  
Vol 111 (3) ◽  
pp. 466-478 ◽  
Author(s):  
A. E. Catania ◽  
A. Mittica

In addition to the frequently used statistical ensemble-average, non-Reynolds filtering operators have long been proposed for nonstationary turbulent quantities. Several techniques for the reduction of velocity data acquired in the cylinder of internal combustion reciprocating engines have been developed by various researchers in order to separate the “mean flow” from the “fluctuating motion,” cycle by cycle, and to analyze small-scale engine turbulence by statistical methods. Therefore a thorough examination of these techniques and a detailed comparison between them would seem to be a preliminary step in attempting a general study of unconventional averaging procedures for reciprocating engine flow application. To that end, in the present work, five different cycle-resolved data reduction methods and the conventional ensemble-average were applied to the same in-cylinder velocity data, so as to review and compare them. One of the methods was developed by the authors. The data were acquired in the cylinder of a direct-injection automotive diesel engine, during induction and compression strokes, using an advanced hot-wire anemometry technique. Correlation and spectral analysis of the engine turbulence, as determined from the data with the different procedures, were also performed.


2017 ◽  
Vol 47 (10) ◽  
pp. 2419-2427 ◽  
Author(s):  
Daniel B. Whitt ◽  
John R. Taylor

AbstractAtmospheric storms are an important driver of changes in upper-ocean stratification and small-scale (1–100 m) turbulence. Yet, the modifying effects of submesoscale (0.1–10 km) motions in the ocean mixed layer on stratification and small-scale turbulence during a storm are not well understood. Here, large-eddy simulations are used to study the coupled response of submesoscale and small-scale turbulence to the passage of an idealized autumn storm, with a wind stress representative of a storm observed in the North Atlantic above the Porcupine Abyssal Plain. Because of a relatively shallow mixed layer and a strong downfront wind, existing scaling theory predicts that submesoscales should be unable to restratify the mixed layer during the storm. In contrast, the simulations reveal a persistent and strong mean stratification in the mixed layer both during and after the storm. In addition, the mean dissipation rate remains elevated throughout the mixed layer during the storm, despite the strong mean stratification. These results are attributed to strong spatial variability in stratification and small-scale turbulence at the submesoscale and have important implications for sampling and modeling submesoscales and their effects on stratification and turbulence in the upper ocean.


2021 ◽  
Author(s):  
Waleed Ahmed Shahzad

The purpose of this study was to evaluate whether anxiety and depression have a negative effect on academic performance. This small-scale study assessed the relationship between these factors. A cross-sectional questionnaire survey was carried out. A randomized sample of 52 high school students based in various schools across Lahore participated in the survey. Of the participants, 32 were males and 20 were females. As a measure of anxiety and depression 14 questions from the DASS-21 were utilized (The 7 questions pertaining to the measure of stress were not included in this study). Based on the DASS-21 score obtained by the respondents they were classified under categories of normal, mild, moderate, severe and extremely severe levels of anxiety and depression. As a measure of academic performance, the Grade Point Average (GPA) of the students was obtained via the survey. The mean average GPA was calculated for all the students falling under the aforementioned categories pertaining to anxiety and depression separately and these averages were compared. It was found that the mean average GPA was highest in students falling under the categories of normal and mild levels of anxiety and depression. Whereas, mean average GPA was lower in students suffering from severe levels of anxiety and depression. These findings suggest the need to come up with methods to combat anxiety and depression in high school students as these factors impede academic performance.


2013 ◽  
Vol 6 (3) ◽  
pp. 527-537 ◽  
Author(s):  
E. Jäkel ◽  
M. Wendisch ◽  
B. Mayer

Abstract. Spectral airborne upward and downward irradiance measurements are used to derive the area-averaged surface albedo. Real surfaces are not homogeneous in their reflectivity. Therefore, this work studies the effects of the heterogeneity of surface reflectivity on the area-averaged surface albedo to quantify how well aircraft measurements can resolve the small-scale variability of the local surface albedo. For that purpose spatially heterogeneous surface albedo maps were input into a 3-dimensional (3-D) Monte Carlo radiative transfer model to simulate 3-D irradiance fields. The calculated up- and downward irradiances in altitudes between 0.1 and 5 km are used to derive the area-averaged surface albedo using an iterative retrieval method that removes the effects due to atmospheric scattering and absorption within the layer beneath the considered level. For the case of adjacent land and sea surfaces, parametrizations are presented which quantify the horizontal distance from the coastline that is required to reduce surface heterogeneity effects on the area-averaged surface albedo to a given limit. The parametrization which is a function of altitude, aerosol optical depth, single scattering albedo, and the ratio of local land and sea albedo was applied for airborne spectral measurements. In addition, the deviation between area-averaged and local surface albedo is determined for more complex surface albedo maps. For moderate aerosol conditions (optical depth less than 0.4) and a wavelength range between 400 and 1000 nm, the altitude and the heterogeneity of the surface albedo are the dominant factors determining the mean deviation between local and area-averaged surface albedo. A parametrization of the mean deviation is applied to an albedo map that was derived from a Landsat image of an area in East Anglia (UK). Parametrization and direct comparison of local and area-averaged surface albedo show similar mean deviations (20% vs. 25%) over land.


Sign in / Sign up

Export Citation Format

Share Document