scholarly journals Modification of CaO Catalyst with Impregnation Method Using KoH in Biodiesel Synthesis from Waste Cooking Oil

2019 ◽  
Vol 19 (2) ◽  
pp. 62
Author(s):  
Syarifuddin Oko ◽  
Andri Kurniawan

Chicken eggshells can be used as raw material in the manufacture of CaO catalysts. Increased CaO catalyst activity can be done by the impregnation method. The purpose of this study was to determine the effect of %K on the wet impregnation of CaO catalyst using KOH and to find out the impregnation catalyst (CaO / K2O) on the biodiesel yield. Prepared chicken egg shells were calcined at 900oC for 3 hours. Then the CaO obtained was impregnated using KOH with a variation of % K (5%, 7%, 9% and 12% (w / w)) while heated at 85oC. The impregnation product was calcined at 600oC for 5 hours. The impregnation catalyst (CaO K2O) was applied to the biodiesel synthesis through a transesterification reaction with a mole ratio of 1:12 waste cooking oil: methanol, the amount of catalyst was 1.5% at a reaction temperature of 70°C for 2.5 hours. Based on the results of SEM-EDS analysis, the highest K2O at 7% K was 21.99%), while the highest CaO content was at 9% K by 81.53%. For the highest surface area analysis at 7% K with a surface area of 71.22 m2 / g, alkalinity was 2.59 mmol / g. The best biodiesel was obtained with a yield of 87.17%, kinematic viscosity of 2.89 cSt, water content of 0.032%, density of 0.819 g/ml, methyl ester level of 99.39%.

2021 ◽  
Author(s):  
Gesha Desy Alisha ◽  
Wega Trisunaryanti ◽  
Akhmad Syoufian

Abstract In this study, natural source Parangtritis beach sand was extracted into mesoporous silica (MS). Synthesis of mesoporous silica (MS) was carried out at sodium silicate: CTAB ratio of 1:0.5 (w/w). Monometallic catalyst was used to improve the performance of the catalyst. The monometallic used was Mo metal, which was synthesized using the wet impregnation method. Catalysts were characterized using FTIR, XRD, Surface Area Analyzer (SAA), SEM-EDX, and TEM. MS has pore diameters and surface area of 2.62 nm and 897.3 m2/g. Mo/MS has pore diameters, surface area, and Mo metal concentration of 2.46 nm, 593 m2/g, and 4.75 %. Catalytic activity and selectivity were evaluated in hydrocracking of waste palm cooking oil at 500, 550, and 600 oC, and catalyst: waste palm cooking oil ratio of 1:100, 1:200, and 1:300. The best catalyst will be tested for reusability 3 times through the hydrocracking process. Mo/MS produces better liquid products and hydrocarbon compounds than MS. The results of the conversion of liquid products analyzed using GCMS. The yield of liquid products obtained in the hydrocracking of waste palm cooking oil using Mo/MS with the optimum temperature and the weight ratio of catalyst: feed at 550oC and 1: 300 was 66.99 wt.% with consists of hydrocarbon compound as 62.79 wt.%. The yield of liquid products obtained in the hydrocracking waste palm cooking oil using the used Mo/MS catalyst in the last run was 80.26 wt.% with consist of hydrocarbon compound as 74.13 wt.%.


2014 ◽  
Vol 1044-1045 ◽  
pp. 259-262
Author(s):  
Si Yi Yu ◽  
Xin You Han ◽  
Jun Mi

A KCl-doped CaO solid alkali catalyst was obtained in a wet impregnation method and treated under microwave irradiation to obtain enhanced stability and activity. Then the catalyst was successfully used in the transesterification of refined waste cooking oil with methanol to produce biodiesel. A uniform design experimentation U7 (74) and regression analysis by DPS software were used to obtain the optimum conditions of transesterification at the lowest cost. Temperature 338K, catalyst amount 4.5% (wt./wt.oil) and methanol/oil molar ratio 9:1, after 90 min reaction, the fatty acid methyl esters yield reached 91.28% and the purity was over 99%, which was up to the national standard for B-100 biodiesel.


2017 ◽  
Vol 5 (1) ◽  
pp. 47-52
Author(s):  
St. Annisa Gani Rachim ◽  
Indah Raya ◽  
Muhammad Zakir

Research about modification of CaO catalyst to produce biodiesel has done. This research aims to know the effectiveness of CaO-ZnCl2 belong to ASTM D6751 to get a yield biodiesel.  Modification of the CaO with ZnCl2 was conducted by impregnation method using methanol and n-hexane. For synthesis biodiesel, methanol is used as solvent and Waste Cooking Oil (WCO) as raw material. Ratio molar of WCO and methanol is 12:1 with 3% CaO-ZnCl2 added.  This reaction is carried out at a temperature of 65oC. the biodiesel is characterized by Fourier Transform Infrared (FT-IR) to determine the presence of ester groups formed. The yield percentage of biodiesel produced is 77.94%. The characterization of biodiesel properties consist of acid number is 73.38 mg KOH/g, density is 0.9038 and water content is 0.0053%.


2018 ◽  
Vol 7 (2) ◽  
pp. 136-141
Author(s):  
Nuni Widiarti ◽  
Ismi Arinal Haq ◽  
F. Widhi Mahatmanti ◽  
Harjito Harjito ◽  
Cepi Kurniawan ◽  
...  

CaO is a very good catalyst for oil transesterification reactions into biodiesel, but requires a reaction time of 2 hours to obtain equilibrium. The time of CaO catalysis reaction can be accelerated by modifying the CaO catalyst with SrO. Synthesis biodiesel of waste cooking oil has been successfully conducted by transesterification reaction that used batch reactor assisted by CaO.SrO catalyst. The aim of this study is to determine the characteristics and catalytic activity of catalyst in the transesterification reaction. Catalysts have been successfully synthesized by coprecipitation method with oil to methanol molar ratio of 1:1, and its calcined at 800oC for 3 hours. Catalyst was characterized by XRD to determine the crystallinity. The smaller catalyst crystallinity obtained as the decline in intensity and shifts diffraction angles of CaO modified SrO catalyst. Surface area of catalyst characterized by SAA, that allow surface area between CaO modified SrO by 10.217 m2/g. Transesterification reaction performed on variation time (30, 60, 90, 120, 150 minutes), and the catalysts amount (1, 2, 4, 6, 8% w/v). The optimum condition of catalytic activity in reaction for 2 hours and the catalyst amount is 1% w/v of reactants that produce yield of biodiesel is 96.4%.


2013 ◽  
Vol 14 (3) ◽  
pp. 219 ◽  
Author(s):  
Dwi Kartika ◽  
Senny Widyaningsih

Transesterification of waste cooking oil into biodiesel using KOH catalyst with and without esterification process usingactivated natural zeolite (ZAH) catalyst has been carried out. Activation of the zeolite was done by refluxing with HCl 6Mfor 30 min, followed calcining and oxydized at 500oC for 2 hours, consecutively. The transesterification without esterificationprocess were done using KOH catalyst 1% (w/w) from oil and methanol weight and oil/methanol molar ratio 1:6 at 60oC. Theesterification reaction was also done using ZAH catalyst then continued by transesterification using KOH catalyst inmethanol media. In order to study the effect of ZAH catalyst concentration at constant temperature, the catalysts werevaried, i.e. 0, 1, 2, and 3% (w/w). To investigate the effect of temperature, the experiments were done at various temperaturefrom 30, 45, 60, and 70oC at constant catalyst concentration. The conversion of biodiesel was determined by 1H-NMRspectrometer and physical properties of biodiesel were determined using ASTM standard methods. The results showedthat the transesterification using KOH catalyst without esterification produced biodiesel conversion of 53.29%. The optimumcondition of biodiesel synthesis via esterification process were reached at 60oC and concentration of ZAH catalyst of2% (w/w), that could give biodiesel conversion = 100.00%. The physical properties were conformed with biodiesel ASTM2003b and Directorate General of Oil and Gas 2006 specification.


2021 ◽  
pp. 20-27
Author(s):  
Ngee Sing Chong ◽  
Francis Uchenna Okejiri ◽  
Saidi Abdulramoni ◽  
Shruthi Perna ◽  
Beng Guat Ooi

Due to the high cost of feedstock and catalyst in biodiesel production, the viability of the biodiesel industry has been dependent on government subsidies or tax incentives. In order to reduce the cost of production, food wastes including eggshells and oyster shells have been used to prepare calcium oxide (CaO) catalysts for the transesterification reaction of biodiesel synthesis. The shells were calcined at 1000 °C for 4 hours to obtain CaO powders which were investigated as catalysts for the transesterification of waste cooking oil. The catalysts were characterized by Fourier Transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), and X-ray fluorescence (XRF) spectroscopy. Reaction parameters such as methanol-to-oil molar ratio, CaO catalyst concentration, and reaction time were evaluated and optimized for the percentage conversion of cooking oil to biodiesel esters. The oyster-based CaO showed better catalytic activity when compared to the eggshell-based CaO under the same set of reaction conditions.


2018 ◽  
Author(s):  
◽  
Elvis Tinashe Ganda

Thermochemical catalytic conversion of ethanol-waste cooking oil (eth-WCO) mixtures was studied over synthesised aluminosilicate catalysts HZSM-5, FeHZSM-5 and NiHZSM-5. The thermochemical reactions were carried out at temperatures of 400° and 450°C at a fixed weight hourly space velocity of 2.5 h-1 in a fixed bed reactor system. Successful conversion of the eth-WCO mixtures was carried out over the synthesised catalyst systems and in order to fully understand the influence of the catalysts, several techniques were used to characterise the synthesised materials which include XRD, SEM, EDS, BET techniques. Results of the catalyst characterisation showed that highly crystalline solid material had been formed as evidenced by the high relative crystallinity in comparison with the commercial HZSM-5 catalyst at 2θ peak values of 7°- 9° and 23°- 24°. The introduction of metals decreased the intensity of the peaks leading to lower values of relative crystallinity of 88% and 90% for FeHZSM-5 and NiHZSM-5, respectively. However this was even slightly higher than the commercial sample which had a value of 86% with respect to HZSM-5 synthesised catalyst taken as reference material. There was no significant change in XRD patterns due to the introduction of metal. Elemental analysis done with energy dispersive spectroscopy showed the presence of the metal promoters (Fe, Ni) and the Si/Al ratio obtained from this technique was 38 compared to the target ratio of 50 set out initially in the synthesis. From the SEM micrographs the morphology of the crystals could be described as regular agglomerated sheet like material. Surface area analysis showed that highly microporous crystals had been synthesised with lower external surface area values ranging from 57.23 m2/g - 100.82 m2/g compared to the microporous surface area values ranging from 195.96 m2/g to 212.51 m2/g. For all catalyst employed in this study high conversions were observed with values of over 93 %, almost total conversion was achieved for some samples with values as high as 99.6 % with FeHZSM-5 catalysts. Despite the high level of conversion the extent of deoxygenation varied with lower values recorded for FeHZSM-5 (25%WCO) at 400°C and NiHZSM-5 (75%WCO) at 450°C with oxygenated hydrocarbons of 19.5% and 19.33% respectively. The organic liquid product yield comprised mostly of aromatic hydrocarbon (toluene, p-xylene and naphthalene) decreased with the introduction of metal promoters with NiHZSM-5 producing higher yields than FeHZSM-5. For the pure waste cooking oil (WCO) feedstock the parent catalyst HZSM-5 had a liquid yield of 50% followed by NiHZSM-5 with 44% and lastly FeHZSM-5 had 40% at 400°C which may be seen to follow the pattern of loss of relative crystallinity. An increase in operating temperature to 450°C lowered the quantity of organic liquid product obtained in the same manner with the HZSM-5 parent catalyst still having the highest yield of 38% followed by Ni-HZSM-5 with 36% and Fe-HZSM-5 having a value of 30% for pure waste cooking oil feedstock which may be attributed to thermally induced secondary cracking reactions. For all catalyst systems with an increase in the content of waste cooking oil from 25% to 100% in the feed mixture there was a linearly increasing trend of the liquid product yield. HZSM-5 catalyst increased from 14% to 50% while FeHZSM-5 increased from 16% to 40% and NiHZSM-5 increased from 12% to 44% at a temperature setting of 400°C with lower values observed at 450°C.Results obtained in this study show the potential of producing aromatics for fuel and chemical use with highly microporous zeolite from waste material such as waste cooking oil forming part of the feedstock.


2019 ◽  
Vol 102 (2) ◽  
pp. 153-160 ◽  
Author(s):  
Alberto Mannu ◽  
Monica Ferro ◽  
Maria Enrica Di Pietro ◽  
Andrea Mele

The consideration towards waste cooking oils is changing from hazardous waste to valuable raw material for industrial application. During the last 5 years, some innovative processes based on the employment of recycled waste cooking oil have appeared in the literature. In this review article, the most recent and innovative applications of recycled waste cooking oil are reported and discussed. These include the production of bioplasticizers, the application of chemicals derived from waste cooking oils as energy vectors and the use of waste cooking oils as a solvent for pollutant agents.


2019 ◽  
Vol 35 (1) ◽  
pp. 221-227
Author(s):  
Maulida Lubis ◽  
Mara Bangun Harahap ◽  
Iriany Iriany ◽  
Muhammad Hendra S. Ginting ◽  
Iqbal Navissyah Lazuardi ◽  
...  

Cooking oil waste that has been disposed could contamine the environment. However, if it is processed well, it can potentially become a raw material of polyurethane. The aim of this study was to determine the best polyurethane on the tensile strength, impact strength, elongation at break, water absorption, characterization of Fourier Transform Infra-Red (FTIR) and the characterization of Scanning Electron Microscopy (SEM). The variables used in this study were ambient process temperature with 440 rpm stirring speed, 1-minute stirring time, the ratio of polyoland WCO was 7:3 (% w/w), and the ratio of Toluene Diisocyanate (TDI) and WCO was 1:1; 1:2; 1:3; 1:4 (% w/w). The results obtained from the analysis of the best tensile strength against the polyurethane synthetic was in the 1:1 ratio of mixed variations between oil and TDI with a value of 0.403 MPa. The best impact strength was in the ratio of mixed variations between oil and TDI with 1:4 (% w/w) with a value of 600.975 J/m2. The best elongation at break against polyurethane foam synthetic was in the 1:3 ratio of mixture variations of oil and TDI with a value of 4.506%.


Sign in / Sign up

Export Citation Format

Share Document