scholarly journals APPLICATION OF LINEAR ASYNCHRONOUS MOTORS FOR HIGH-SPEED GROUND TRANSPORT

Author(s):  
S. T. Akhatov ◽  
V. G. Solonenko ◽  
N. M. Makhmetova ◽  
S. A. Kosenko ◽  
N. V. Ivanovtseva ◽  
...  

Magnetic suspension in high-speed ground transport systems is an alternative to the rail wheel. The successful solution to the development of high-speed ground transport is largely determined by the creation of operationally efficient linear motors, the main task of which is to convert electrical energy into mechanical energy and create tractive force to ensure the movement of the crew according to a given program in the range of operating speeds. The article investigates linear asynchronous motors with longitudinal closure of magnetic flux of single-ended design. As a result of investigation of physical processes in linear motors caused by edge problems it was found that the cause of the transverse edge effect is the finite width dimensions of the reactive bus, the change of which causes closure of eddy currents within the active area of inductor, leads to weakening of magnetic field in the central zone and to reduction of tractive force. The discrepancy between the calculated and experimental indicators of physical processes in linear asynchro- nous motors due to significant idealization of mathematical models led to the development of a three-dimensional theory, brought to the calculation programs. The developed calculation program of electromechanical characteristics of linear induction motors with inductor and reactive bus layout, as well as their geometrical and physical parameters allows to determine the necessary integral motor characteristics in the form of a levitation function.

Author(s):  
N.A. Kazansky ◽  
◽  
P. I. Lysyuk ◽  
I.F. Muzafarov

Projects for the development of the transport system of the Russian Federation involve the introduction of advanced optical technologies in the infrastructure of high-speed modern transport systems in the context of the implementation of un- manned maintenance technologies. The article presents the following areas of research carried out by the authors: — organization of high-speed super-long single-span trunk communication lines without intermediate allocation of digital channels and paths laid in areas with limited access by the maintenance personnel in areas with no infrastructure (underwater obstacles, mountainous terrain, desert and swampy areas). The authors of the article highlighted the main factors influencing the design features of high-speed ultra-long single-span communication lines; — application of photonic switching (PS) technology in high-speed backbone communication networks to ensure operational logical reconfiguration of channel structures and digital paths. Within the framework of this direction of research, the authors have proposed methods for calculating the probabilities of the occurrence of internal blockages in various structures of PS based on the use of the method of mathematical induction in order to synthesize PS structures of a given capacity; — development of effective technologies for remote monitoring of the health of transport infrastructure facilities using passive optical transmission lines. Within the framework of this line of research, the authors analyze the features of the physical prop- erties of optical fibers used as a distributed sensor on the basis of which an integrated system can be built that can measure various physical parameters, such as vibration, deformation, temperature and other parameters.


2021 ◽  
Vol 254 ◽  
pp. 02010
Author(s):  
Anatoly Petrukovich ◽  
Mikhail Моgilevskii ◽  
Igor Kozlov ◽  
Sergey Pulinetz ◽  
Yurii Dobrolenskii ◽  
...  

The Ionosphere missions are the part of Ionosond-2025 space project, which main scientific objectives are monitoring of physical processes in the Earth upper atmosphere, ionosphere and magnetosphere, as well as of solar activity. Within the framework of the Ionozond-2025 project, it is planned to launch four spacecraft Ionosphere and one satellite Zond. The Zond satellite is planned to be launched in 2025. The main task of Zond mission is patrol of solar activity. The launch of the first pair of spacecraft is planned in early 2022, the second pair - late 2022 or early 2023. In case of successful implementation of the program of experiments on the Ionosphere satellites, control of the physical parameters of electromagnetic fields and corpuscular radiation in the near-Earth space will be provided, new information will be obtained on the geophysical processes occurring in the magnetosphere, ionosphere and upper atmosphere in their connection with solar activity.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Erik Buhmann ◽  
Sascha Diefenbacher ◽  
Engin Eren ◽  
Frank Gaede ◽  
Gregor Kasieczka ◽  
...  

AbstractAccurate simulation of physical processes is crucial for the success of modern particle physics. However, simulating the development and interaction of particle showers with calorimeter detectors is a time consuming process and drives the computing needs of large experiments at the LHC and future colliders. Recently, generative machine learning models based on deep neural networks have shown promise in speeding up this task by several orders of magnitude. We investigate the use of a new architecture—the Bounded Information Bottleneck Autoencoder—for modelling electromagnetic showers in the central region of the Silicon-Tungsten calorimeter of the proposed International Large Detector. Combined with a novel second post-processing network, this approach achieves an accurate simulation of differential distributions including for the first time the shape of the minimum-ionizing-particle peak compared to a full Geant4 simulation for a high-granularity calorimeter with 27k simulated channels. The results are validated by comparing to established architectures. Our results further strengthen the case of using generative networks for fast simulation and demonstrate that physically relevant differential distributions can be described with high accuracy.


2004 ◽  
Vol 14 (03) ◽  
pp. 625-631 ◽  
Author(s):  
J. W. LAI ◽  
W. HAFEZ ◽  
M. FENG

We have fabricated the high-speed InP/InGaAs -based single heterojunction bipolar transistors (SHBTs) with current gain cutoff frequency, fT from 166GHz to over 500GHz by the approach of vertical scaling. Collector thickness is reduced from 3000Å to 750Å and the peak current density is increased up to 1300kA/cm2. In this paper, device rf performance has been compared with respect to materials with different vertical dimensions. The scaling limitation is also studied by analytical approach. The extracted physical parameters suggest that the parasitic emitter resistance is the major limit on further enhancing ultra-scaled HBT intrinsic speed due to the associated RECBC delay. The cut-off frequency of a 500Å collector SHBT has been measured and the results indicate a dramatic drop on fT, supporting the conclusion projected by model analysis. It is also commented that for deeply downscaled HBTs, impact ionization could be another degrading mechanism limits device bandwidth.


2011 ◽  
Vol 7 (S282) ◽  
pp. 65-66
Author(s):  
Augustin Skopal

AbstractThe spectrum of strongly interacting binaries, as for example, high and low mass X-ray binaries, symbiotic (X-ray) binaries and/or classical and recurrent novae, consists of more components of radiation contributing from hard X-rays to radio wavelengths. To understand the basic physical processes responsible for the observed spectrum we have to disentangle the composite spectrum into its individual components, i.e. to determine their physical parameters. In this short contribution I demonstrate the method of modeling the multiwavelength SED on the example of the extragalactic super-soft X-ray source RX J0059.1-7505 (LIN 358).


2017 ◽  
Vol 45 ◽  
pp. 1760020
Author(s):  
Henrique Linares ◽  
Carlos Frajuca ◽  
Fabio S. Bortoli ◽  
Givanildo A. Santos ◽  
Francisco Y. Nakamoto

This work aims to design a magnetic suspension for an experiment to measure gravitys velocity. Such device must rotate two objects symmetrically with the greatest mass and largest radius as possible, at the speed of [Formula: see text], which means this device falls into the high-speed machines category. The guidelines and solutions proposed in this paper constitute a contribution to this class of engineering problems and were based on an extensive literature search, contacts with experts, the tutors and author’s experience, as well as on experimental results. The main solution proposed is a hybrid bearing that combines a radial passive magnetic bearing with an axial sliding bearing, here called MPS (Magnetic Passive and Sliding) bearing.


2014 ◽  
Vol 1 (2) ◽  
pp. 140271 ◽  
Author(s):  
Yu Gu ◽  
Ruslan Burtovyy ◽  
John Custer ◽  
Igor Luzinov ◽  
Konstantin G. Kornev

When controlling the assembly of magnetic nanorods and chains of magnetic nanoparticles, it is extremely challenging to bring them together side by side while keeping a desired spacing between their axes. We show that this challenge can be successfully resolved by using a non-uniform magnetic field that defeats an inherent repulsion between nanorods. Nickel nanorods were suspended in a viscous film and a non-uniform field was used to control their placement. The in-plane movement of nanorods was tracked with a high-speed camera and a detailed image analysis was conducted to quantitatively characterize the behaviour of the nanorods. The analysis focused on the behaviour of a pair of neighbour nanorods, and a corresponding dynamic model was formulated and investigated. The complex two-dimensional dynamics of a nanorod pair was analysed analytically and numerically, and a phase portrait was constructed. Using this phase portrait, we classified the nanorod behaviour and revealed the experimental conditions in which nanorods could be placed side by side. Dependence of the distance between a pair of neighbour nanorods on physical parameters was analysed. With the aid of the proposed theory, one can build different lattices and control their spacing by applying different field gradients.


2001 ◽  
Vol 16 (27) ◽  
pp. 1751-1759 ◽  
Author(s):  
XIN WANG ◽  
JIARONG LI ◽  
JUEPING LIU

We present analytical results for the equation of state for hot gluon plasma obtained with an effective perturbation based on hard thermal loops resummation theory. The effective two-loop results depend on Debye screening and finite width of gluons as physical parameters. Considering next-to-leading Debye mass and finite width effects, we find the equation of state to be in good agreement with recent lattice results for T≳2T c .


2015 ◽  
Vol 2 (2) ◽  
pp. 89-98
Author(s):  
Nataliya Kazantseva
Keyword(s):  

Author(s):  
Sergey Savin ◽  
Vitaly Kolchunov

The analysis of scientific literature shows that to date, the physical parameters of the deformation of reinforced concrete bar structures during their dynamic buckling and the influence of the dissipative properties of the structural system on this process remain insufficiently studied. In this regard, the paper proposes an analytical solution to the problem of dynamic buckling of a reinforced concrete column when it is loaded with an impact load, taking into account the presence of initial geometric and (or) physical imperfections and damping properties of the system, as well as an analysis and assessment of the column deformationparameters based on the obtained analytical solution. An expression for the dynamic deflection of a bar element under its axial loading with a high-speed shock load, taking into account damping, is obtained in an analytical form. For practical calculations in a quasi-static formulation, the paper proposes an expression for the dynamic factor kd of bar structures under axial shock load. A numerical example of calculating a reinforced concrete column using the obtained analytical expressions with and without damping is considered. It was found that the maximum deflection of the elastic axis of the column under high-speed loading was achieved at t = 0.04 s. In this case, the total dynamic deflection taking into account damping was 4.8% less than the deviation without taking into account damping and 1.18 times more than the corresponding static value.


Sign in / Sign up

Export Citation Format

Share Document