scholarly journals A gradient field defeats the inherent repulsion between magnetic nanorods

2014 ◽  
Vol 1 (2) ◽  
pp. 140271 ◽  
Author(s):  
Yu Gu ◽  
Ruslan Burtovyy ◽  
John Custer ◽  
Igor Luzinov ◽  
Konstantin G. Kornev

When controlling the assembly of magnetic nanorods and chains of magnetic nanoparticles, it is extremely challenging to bring them together side by side while keeping a desired spacing between their axes. We show that this challenge can be successfully resolved by using a non-uniform magnetic field that defeats an inherent repulsion between nanorods. Nickel nanorods were suspended in a viscous film and a non-uniform field was used to control their placement. The in-plane movement of nanorods was tracked with a high-speed camera and a detailed image analysis was conducted to quantitatively characterize the behaviour of the nanorods. The analysis focused on the behaviour of a pair of neighbour nanorods, and a corresponding dynamic model was formulated and investigated. The complex two-dimensional dynamics of a nanorod pair was analysed analytically and numerically, and a phase portrait was constructed. Using this phase portrait, we classified the nanorod behaviour and revealed the experimental conditions in which nanorods could be placed side by side. Dependence of the distance between a pair of neighbour nanorods on physical parameters was analysed. With the aid of the proposed theory, one can build different lattices and control their spacing by applying different field gradients.

1980 ◽  
Vol 23 (3) ◽  
pp. 630-645 ◽  
Author(s):  
Gerald Zimmermann ◽  
J.A. Scott Kelso ◽  
Larry Lander

High speed cinefluorography was used to track articulatory movements preceding and following full-mouth tooth extraction and alveoloplasty in two subjects. Films also were made of a control subject on two separate days. The purpose of the study was to determine the effects of dramatically altering the structural dimensions of the oral cavity on the kinematic parameters of speech. The results showed that the experimental subjects performed differently pre and postoperatively though the changes were in different directions for the two subjects. Differences in both means and variabilities of kinematic parameters were larger between days for the experimental (operated) subjects than for the control subject. The results for the Control subject also showed significant differences in the mean values of kinematic variables between days though these day-to-day differences could not account for the effects found pre- and postoperatively. The results of the kinematic analysis, particularly the finding that transition time was most stable over the experimental conditions for the operated subjects, are used to speculate about the coordination of normal speech.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 19-29
Author(s):  
Shuting Ren ◽  
Yong Li ◽  
Bei Yan ◽  
Jinhua Hu ◽  
Ilham Mukriz Zainal Abidin ◽  
...  

Structures of nonmagnetic materials are broadly used in engineering fields such as aerospace, energy, etc. Due to corrosive and hostile environments, they are vulnerable to the Subsurface Pitting Corrosion (SPC) leading to structural failure. Therefore, it is imperative to conduct periodical inspection and comprehensive evaluation of SPC using reliable nondestructive evaluation techniques. Extended from the conventional Pulsed eddy current method (PEC), Gradient-field Pulsed Eddy Current technique (GPEC) has been proposed and found to be advantageous over PEC in terms of enhanced inspection sensitivity and accuracy in evaluation and imaging of subsurface defects in nonmagnetic conductors. In this paper two GPEC probes for uniform field excitation are intensively analyzed and compared. Their capabilities in SPC evaluation and imaging are explored through simulations and experiments. The optimal position for deployment of the magnetic field sensor is determined by scrutinizing the field uniformity and inspection sensitivity to SPC based on finite element simulations. After the optimal probe structure is chosen, quantitative evaluation and imaging of SPC are investigated. Signal/image processing algorithms for SPC evaluation are proposed. Through simulations and experiments, it has been found that the T-shaped probe together with the proposed processing algorithms is advantageous and preferable for profile recognition and depth evaluation of SPC.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2925 ◽  
Author(s):  
Arianna Ricci ◽  
Giuseppina Paola Parpinello ◽  
Nemanja Teslić ◽  
Paul Andrew Kilmartin ◽  
Andrea Versari

Twenty commercially available oenological tannins (including hydrolysable and condensed) were assessed for their antiradical/reducing activity, comparing two analytical approaches: The 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radical scavenging spectrophotometric assay and the cyclic voltammetry (CV) electrochemical method. Electrochemical measurements were performed over a −200 mV–500 mV scan range, and integrated anodic currents to 500 mV were used to build a calibration graph with (+)-catechin as a reference standard (linear range: From 0.0078 to 1 mM, R2 = 0.9887). The CV results were compared with the DPPH• assay (expressed as % of radical scavenged in time), showing high correlation due to the similarity of the chemical mechanisms underlying both methods involving polyphenolic compounds as reductants. Improved correlation was observed by increasing the incubation time with DPPH• to 24 h (R2 = 0.925), demonstrating that the spectrophotometric method requires a long-term incubation to complete the scavenging reaction when high-molecular weight tannins are involved; this constraint has been overcome by using instant CV measurements. We concluded that the CV represents a valid alternative to the DPPH• colorimetric assay, taking advantage of fast analysis and control on the experimental conditions and, because of these properties, it can assist the quality control along the supply chain.


1989 ◽  
Vol 27 (3) ◽  
pp. 375-394 ◽  
Author(s):  
K. YOUCEF-TOUMI ◽  
A. T. Y. KUO
Keyword(s):  

2021 ◽  
Vol 11 (3) ◽  
pp. 39
Author(s):  
Phillip Ozimek ◽  
Hans-Werner Bierhoff ◽  
Elke Rohmann

Past research showed that social networking sites represent perfect platforms to satisfy narcissistic needs. The present study aimed to investigate how grandiose (GN) and vulnerable narcissism (VN) as well as social comparisons are associated with Facebook activity, which was measured with a self-report on three activity dimensions: Acting, Impressing, and Watching. In addition, the state self-esteem (SSE) was measured with respect to performance, social behavior, and appearance. One hundred and ten participants completed an online survey containing measures of SSE and Facebook activity and a priming procedure with three experimental conditions embedded in a social media context (upward comparison, downward comparison, and control group). Results indicated, as expected, that high VN was negatively associated with SSE on each subscale and the overall score. In addition, it was found that VN, but not GN, displayed positive associations with frequency of Facebook activities. Finally, it was proposed and confirmed that VN in interaction with the priming of downward comparisons negatively affected SSE. The conclusion drawn is that VN represents a key variable for the prediction of self-esteem as well as for the frequency of Facebook activity.


2020 ◽  
Vol 26 (3) ◽  
pp. 169-183
Author(s):  
Phudit Ampririt ◽  
Yi Liu ◽  
Makoto Ikeda ◽  
Keita Matsuo ◽  
Leonard Barolli ◽  
...  

The Fifth Generation (5G) networks are expected to be flexible to satisfy demands of high-quality services such as high speed, low latencies and enhanced reliability from customers. Also, the rapidly increasing amount of user devices and high user’s requests becomes a problem. Thus, the Software-Defined Network (SDN) will be the key function for efficient management and control. To deal with these problems, we propose a Fuzzy-based SDN approach. This paper presents and compares two Fuzzy-based Systems for Admission Control (FBSAC) in 5G wireless networks: FBSAC1 and FBSAC2. The FBSAC1 considers for admission control decision three parameters: Grade of Service (GS), User Request Delay Time (URDT) and Network Slice Size (NSS). In FBSAC2, we consider as an additional parameter the Slice Priority (SP). So, FBSAC2 has four input parameters. The simulation results show that the FBSAC2 is more complex than FBSAC1, but it has a better performance for admission control.


2004 ◽  
Vol 14 (03) ◽  
pp. 625-631 ◽  
Author(s):  
J. W. LAI ◽  
W. HAFEZ ◽  
M. FENG

We have fabricated the high-speed InP/InGaAs -based single heterojunction bipolar transistors (SHBTs) with current gain cutoff frequency, fT from 166GHz to over 500GHz by the approach of vertical scaling. Collector thickness is reduced from 3000Å to 750Å and the peak current density is increased up to 1300kA/cm2. In this paper, device rf performance has been compared with respect to materials with different vertical dimensions. The scaling limitation is also studied by analytical approach. The extracted physical parameters suggest that the parasitic emitter resistance is the major limit on further enhancing ultra-scaled HBT intrinsic speed due to the associated RECBC delay. The cut-off frequency of a 500Å collector SHBT has been measured and the results indicate a dramatic drop on fT, supporting the conclusion projected by model analysis. It is also commented that for deeply downscaled HBTs, impact ionization could be another degrading mechanism limits device bandwidth.


Sign in / Sign up

Export Citation Format

Share Document