Improving multi-class Boosting-based object detection

2020 ◽  
Vol 28 (1) ◽  
pp. 81-96
Author(s):  
José Miguel Buenaposada ◽  
Luis Baumela

In recent years we have witnessed significant progress in the performance of object detection in images. This advance stems from the use of rich discriminative features produced by deep models and the adoption of new training techniques. Although these techniques have been extensively used in the mainstream deep learning-based models, it is still an open issue to analyze their impact in alternative, and computationally more efficient, ensemble-based approaches. In this paper we evaluate the impact of the adoption of data augmentation, bounding box refinement and multi-scale processing in the context of multi-class Boosting-based object detection. In our experiments we show that use of these training advancements significantly improves the object detection performance.

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Malte Seemann ◽  
Lennart Bargsten ◽  
Alexander Schlaefer

AbstractDeep learning methods produce promising results when applied to a wide range of medical imaging tasks, including segmentation of artery lumen in computed tomography angiography (CTA) data. However, to perform sufficiently, neural networks have to be trained on large amounts of high quality annotated data. In the realm of medical imaging, annotations are not only quite scarce but also often not entirely reliable. To tackle both challenges, we developed a two-step approach for generating realistic synthetic CTA data for the purpose of data augmentation. In the first step moderately realistic images are generated in a purely numerical fashion. In the second step these images are improved by applying neural domain adaptation. We evaluated the impact of synthetic data on lumen segmentation via convolutional neural networks (CNNs) by comparing resulting performances. Improvements of up to 5% in terms of Dice coefficient and 20% for Hausdorff distance represent a proof of concept that the proposed augmentation procedure can be used to enhance deep learning-based segmentation for artery lumen in CTA images.


Author(s):  
Mr. Kiran Mudaraddi

The paper presents a deep learning-based methodology for detecting social distancing in order to assess the distance between people in order to mitigate the impact of the coronavirus pandemic. The input was a video frame from the camera, and the open-source object detection was pre-trained. The outcome demonstrates that the suggested method is capable of determining the social distancing measures between many participants in a video.


Author(s):  
Limu Chen ◽  
Ye Xia ◽  
Dexiong Pan ◽  
Chengbin Wang

<p>Deep-learning based navigational object detection is discussed with respect to active monitoring system for anti-collision between vessel and bridge. Motion based object detection method widely used in existing anti-collision monitoring systems is incompetent in dealing with complicated and changeable waterway for its limitations in accuracy, robustness and efficiency. The video surveillance system proposed contains six modules, including image acquisition, detection, tracking, prediction, risk evaluation and decision-making, and the detection module is discussed in detail. A vessel-exclusive dataset with tons of image samples is established for neural network training and a SSD (Single Shot MultiBox Detector) based object detection model with both universality and pertinence is generated attributing to tactics of sample filtering, data augmentation and large-scale optimization, which make it capable of stable and intelligent vessel detection. Comparison results with conventional methods indicate that the proposed deep-learning method shows remarkable advantages in robustness, accuracy, efficiency and intelligence. In-situ test is carried out at Songpu Bridge in Shanghai, and the results illustrate that the method is qualified for long-term monitoring and providing information support for further analysis and decision making.</p>


2019 ◽  
Vol 9 (3) ◽  
pp. 565 ◽  
Author(s):  
Hao Qu ◽  
Lilian Zhang ◽  
Xuesong Wu ◽  
Xiaofeng He ◽  
Xiaoping Hu ◽  
...  

The development of object detection in infrared images has attracted more attention in recent years. However, there are few studies on multi-scale object detection in infrared street scene images. Additionally, the lack of high-quality infrared datasets hinders research into such algorithms. In order to solve these issues, we firstly make a series of modifications based on Faster Region-Convolutional Neural Network (R-CNN). In this paper, a double-layer region proposal network (RPN) is proposed to predict proposals of different scales on both fine and coarse feature maps. Secondly, a multi-scale pooling module is introduced into the backbone of the network to explore the response of objects on different scales. Furthermore, the inception4 module and the position sensitive region of interest (ROI) align (PSalign) pooling layer are utilized to explore richer features of the objects. Thirdly, this paper proposes instance level data augmentation, which takes into account the imbalance between categories while enlarging dataset. In the training stage, the online hard example mining method is utilized to further improve the robustness of the algorithm in complex environments. The experimental results show that, compared with baseline, our detection method has state-of-the-art performance.


2020 ◽  
Vol 12 (18) ◽  
pp. 3053 ◽  
Author(s):  
Thorsten Hoeser ◽  
Felix Bachofer ◽  
Claudia Kuenzer

In Earth observation (EO), large-scale land-surface dynamics are traditionally analyzed by investigating aggregated classes. The increase in data with a very high spatial resolution enables investigations on a fine-grained feature level which can help us to better understand the dynamics of land surfaces by taking object dynamics into account. To extract fine-grained features and objects, the most popular deep-learning model for image analysis is commonly used: the convolutional neural network (CNN). In this review, we provide a comprehensive overview of the impact of deep learning on EO applications by reviewing 429 studies on image segmentation and object detection with CNNs. We extensively examine the spatial distribution of study sites, employed sensors, used datasets and CNN architectures, and give a thorough overview of applications in EO which used CNNs. Our main finding is that CNNs are in an advanced transition phase from computer vision to EO. Upon this, we argue that in the near future, investigations which analyze object dynamics with CNNs will have a significant impact on EO research. With a focus on EO applications in this Part II, we complete the methodological review provided in Part I.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 160
Author(s):  
Xuelin Zhang ◽  
Donghao Zhang ◽  
Alexander Leye ◽  
Adrian Scott ◽  
Luke Visser ◽  
...  

This paper focuses on improving the performance of scientific instrumentation that uses glass spray chambers for sample introduction, such as spectrometers, which are widely used in analytical chemistry, by detecting incidents using deep convolutional models. The performance of these instruments can be affected by the quality of the introduction of the sample into the spray chamber. Among the indicators of poor quality sample introduction are two primary incidents: The formation of liquid beads on the surface of the spray chamber, and flooding at the bottom of the spray chamber. Detecting such events autonomously as they occur can assist with improving the overall operational accuracy and efficacy of the chemical analysis, and avoid severe incidents such as malfunction and instrument damage. In contrast to objects commonly seen in the real world, beading and flooding detection are more challenging since they are of significantly small size and transparent. Furthermore, the non-rigid property increases the difficulty of the detection of these incidents, as such that existing deep-learning-based object detection frameworks are prone to fail for this task. There is no former work that uses computer vision to detect these incidents in the chemistry industry. In this work, we propose two frameworks for the detection task of these two incidents, which not only leverage the modern deep learning architectures but also integrate with expert knowledge of the problems. Specifically, the proposed networks first localize the regions of interest where the incidents are most likely generated and then refine these incident outputs. The use of data augmentation and synthesis, and choice of negative sampling in training, allows for a large increase in accuracy while remaining a real-time system for inference. In the data collected from our laboratory, our method surpasses widely used object detection baselines and can correctly detect 95% of the beads and 98% of the flooding. At the same time, out method can process four frames per second and is able to be implemented in real time.


2021 ◽  
Vol 13 (18) ◽  
pp. 3650
Author(s):  
Ru Luo ◽  
Jin Xing ◽  
Lifu Chen ◽  
Zhouhao Pan ◽  
Xingmin Cai ◽  
...  

Although deep learning has achieved great success in aircraft detection from SAR imagery, its blackbox behavior has been criticized for low comprehensibility and interpretability. Such challenges have impeded the trustworthiness and wide application of deep learning techniques in SAR image analytics. In this paper, we propose an innovative eXplainable Artificial Intelligence (XAI) framework to glassbox deep neural networks (DNN) by using aircraft detection as a case study. This framework is composed of three parts: hybrid global attribution mapping (HGAM) for backbone network selection, path aggregation network (PANet), and class-specific confidence scores mapping (CCSM) for visualization of the detector. HGAM integrates the local and global XAI techniques to evaluate the effectiveness of DNN feature extraction; PANet provides advanced feature fusion to generate multi-scale prediction feature maps; while CCSM relies on visualization methods to examine the detection performance with given DNN and input SAR images. This framework can select the optimal backbone DNN for aircraft detection and map the detection performance for better understanding of the DNN. We verify its effectiveness with experiments using Gaofen-3 imagery. Our XAI framework offers an explainable approach to design, develop, and deploy DNN for SAR image analytics.


Sign in / Sign up

Export Citation Format

Share Document