Fluid Biomarkers in Clinical Trials for Alzheimer’s Disease: Current and Future Application

2021 ◽  
pp. 1-14
Author(s):  
Jianwei Yang ◽  
Longfei Jia ◽  
Yan Li ◽  
Qiongqiong Qiu ◽  
Meina Quan ◽  
...  

Alzheimer’s disease (AD) research is entering a unique moment in which enormous information about the molecular basis of this disease is being translated into therapeutics. However, almost all drug candidates have failed in clinical trials over the past 30 years. These many trial failures have highlighted a need for the incorporation of biomarkers in clinical trials to help improve the trial design. Fluid biomarkers measured in cerebrospinal fluid and circulating blood, which can reflect the pathophysiological process in the brain, are becoming increasingly important in AD clinical trials. In this review, we first succinctly outline a panel of fluid biomarkers for neuropathological changes in AD. Then, we provide a comprehensive overview of current and future application of fluid biomarkers in clinical trials for AD. We also summarize the many challenges that have been encountered in efforts to integrate fluid biomarkers in clinical trials, and the barriers that have begun to be overcome. Ongoing research efforts in the field of fluid biomarkers will be critical to make significant progress in ultimately unveiling disease-modifying therapies in AD.

2020 ◽  
Vol 13 (4) ◽  
pp. 273-294 ◽  
Author(s):  
Elahe Zarini-Gakiye ◽  
Javad Amini ◽  
Nima Sanadgol ◽  
Gholamhassan Vaezi ◽  
Kazem Parivar

Background: Alzheimer’s disease (AD) is the most frequent subtype of incurable neurodegenerative dementias and its etiopathology is still not clearly elucidated. Objective: Outline the ongoing clinical trials (CTs) in the field of AD, in order to find novel master regulators. Methods: We strictly reviewed all scientific reports from Clinicaltrials.gov and PubMed databases from January 2010 to January 2019. The search terms were “Alzheimer's disease” or “dementia” and “medicine” or “drug” or “treatment” and “clinical trials” and “interventions”. Manuscripts that met the objective of this study were included for further evaluations. Results: Drug candidates have been categorized into two main groups including antibodies, peptides or hormones (such as Ponezumab, Interferon β-1a, Solanezumab, Filgrastim, Levemir, Apidra, and Estrogen), and naturally-derived ingredients or small molecules (such as Paracetamol, Ginkgo, Escitalopram, Simvastatin, Cilostazo, and Ritalin-SR). The majority of natural candidates acted as anti-inflammatory or/and anti-oxidant and antibodies exert their actions via increasing amyloid-beta (Aβ) clearance or decreasing Tau aggregation. Among small molecules, most of them that are present in the last phases act as specific antagonists (Suvorexant, Idalopirdine, Intepirdine, Trazodone, Carvedilol, and Risperidone) or agonists (Dextromethorphan, Resveratrol, Brexpiprazole) and frequently ameliorate cognitive dysfunctions. Conclusion: The presences of a small number of candidates in the last phase suggest that a large number of candidates have had an undesirable side effect or were unable to pass essential eligibility for future phases. Among successful treatment approaches, clearance of Aβ, recovery of cognitive deficits, and control of acute neuroinflammation are widely chosen. It is predicted that some FDA-approved drugs, such as Paracetamol, Risperidone, Escitalopram, Simvastatin, Cilostazoand, and Ritalin-SR, could also be used in off-label ways for AD. This review improves our ability to recognize novel treatments for AD and suggests approaches for the clinical trial design for this devastating disease in the near future.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Sergio Davinelli ◽  
Nadia Sapere ◽  
Davide Zella ◽  
Renata Bracale ◽  
Mariano Intrieri ◽  
...  

Alzheimer’s disease (AD) is a severe chronic neurodegenerative disorder of the brain characterised by progressive impairment in memory and cognition. In the past years an intense research has aimed at dissecting the molecular events of AD. However, there is not an exhaustive knowledge about AD pathogenesis and a limited number of therapeutic options are available to treat this neurodegenerative disease. Consequently, considering the heterogeneity of AD, therapeutic agents acting on multiple levels of the pathology are needed. Recent findings suggest that phytochemicals compounds with neuroprotective features may be an important resources in the discovery of drug candidates against AD. In this paper we will describe some polyphenols and we will discuss their potential role as neuroprotective agents. Specifically, curcumin, catechins, and resveratrol beyond their antioxidant activity are also involved in antiamyloidogenic and anti-inflammatory mechanisms. We will focus on specific molecular targets of these selected phytochemical compounds highlighting the correlations between their neuroprotective functions and their potential therapeutic value in AD.


2014 ◽  
Vol 2014 ◽  
pp. 1-22 ◽  
Author(s):  
Qiutian Jia ◽  
Yulin Deng ◽  
Hong Qing

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with two hallmarks:β-amyloid plagues and neurofibrillary tangles. It is one of the most alarming illnesses to elderly people. No effective drugs and therapies have been developed, while mechanism-based explorations of therapeutic approaches have been intensively investigated. Outcomes of clinical trials suggested several pitfalls in the choice of biomarkers, development of drug candidates, and interaction of drug-targeted molecules; however, they also aroused concerns on the potential deficiency in our understanding of pathogenesis of AD, and ultimately stimulated the advent of novel drug targets tests. The anticipated increase of AD patients in next few decades makes development of better therapy an urgent issue. Here we attempt to summarize and compare putative therapeutic strategies that have completed clinical trials or are currently being tested from various perspectives to provide insights for treatments of Alzheimer’s disease.


2019 ◽  
Vol 16 (3) ◽  
pp. 261-277 ◽  
Author(s):  
Firas H. Bazzari ◽  
Dalaal M. Abdallah ◽  
Hanan S. El-Abhar

Alzheimer’s disease (AD) is a progressive neurodegenerative disease and the most common cause of dementia in the elderly. Up to date, the available pharmacological options for AD are limited to cholinesterase inhibitors and memantine that may only provide modest symptomatic management with no significance in slowing down the disease progression. Over the past three decades, the increased interest in and the understanding of AD major pathological hallmarks have provided an insight into the mechanisms mediating its pathogenesis, which in turn introduced a number of hypotheses and novel targets for the treatment of AD. Initially, targeting amyloid-beta and tau protein was considered the most promising therapeutic approach. However, further investigations have identified other major players, such as neuroinflammation, impaired insulin signalling and defective autophagy, that may contribute to the disease progression. While some promising drugs are currently being investigated in human studies, the majority of the previously developed medical agents have come to an end in clinical trials, as they have failed to illustrate any beneficial outcome. This review aims to discuss the different introduced approaches to alleviate AD progression; in addition, provides a comprehensive overview of the drugs in the development phase as well as their mode of action and an update of their status in clinical trials.


The Analyst ◽  
2018 ◽  
Vol 143 (10) ◽  
pp. 2204-2212 ◽  
Author(s):  
Dongtak Lee ◽  
Gyudo Lee ◽  
Dae Sung Yoon

This review surveys the important developments of drug candidates for Alzheimer's disease and highlights gold nanoparticle-based anti-Aβ drug-screening.


Author(s):  
K.V. Giudici

The Clinical Trials on Alzheimer’s Disease (CTAD) 2020 conference was the stage for researchers from all over the world to present their recent and ongoing research focused on potential Alzheimer’s disease (AD) treatments and prevention of cognitive decline. Among a varied range of topics, nutritional aspects arose as possibilities of treatments towards the promotion of a healthy aging. Among the discussed themes, supplementation of omega-3 polyunsaturated fatty acids and multi-nutrient approaches were presented, suggesting that long-term supplementation (i.e., over 3 years) might be needed for observing positive effects on cognitive performance. Trials testing ketogenic agents and carbohydrate-restricted diet were also presented and showed promising effects on improving cognitive function of mild-cognitive impaired (MCI) and pre-diabetic individuals, respectively, in a short-term way (i.e. after 3 to 6 months). The combination of some of the nutritional approaches with physical activity interventions raises the question on whether they would individually perform in a similar way. Promising therapies involving nutrition appear to be safe and well tolerated by volunteers. Failures on achieving positive findings raise questions on whether they were driven by specific characteristics of the studied populations, insufficient doses or duration of treatment. Notwithstanding, current evidence on the applicability of nutrition-based approaches as AD treatments are encouraging but demand further research on the topic.


2019 ◽  
Vol 8 (1) ◽  
pp. 38-46
Author(s):  
Jigishu Ahmed ◽  
Hafizur Rahman

Alzheimer’s disease is one form of dementia affecting a significant proportion of the population. The etiology of this prevalent disease is currently unknown. It is postulated that AD can be treated by using stem cell-based therapies by replacing the lost neurons in the atrophic regions of the brain. For these novel therapies to be successful several sources of stem cells have been proposed, such as pluripotent stem cells as well as multipotent stem cells. Proof of concept in animal studies have shown that stem cells can grafted into the affected regions or delivered intravenously into affected parts of the brain. These experiments had improved cognition and memory performance in rodents. The promising results seen in animal models have increased interest in conducting clinical trials using the same technique. In the last 5 years, several treatments have reached phase II clinical trials.  


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Izumi Maezawa ◽  
David Paul Jenkins ◽  
Benjamin E. Jin ◽  
Heike Wulff

There exists an urgent need for new target discovery to treat Alzheimer’s disease (AD); however, recent clinical trials based on anti-Aβand anti-inflammatory strategies have yielded disappointing results. To expedite new drug discovery, we propose reposition targets which have been previously pursued by both industry and academia for indications other than AD. One such target is the calcium-activated potassium channel KCa3.1 (KCNN4), which in the brain is primarily expressed in microglia and is significantly upregulated when microglia are activated. We here review the existing evidence supporting that KCa3.1 inhibition could block microglial neurotoxicity without affecting their neuroprotective phagocytosis activity and without being broadly immunosuppressive. The anti-inflammatory and neuroprotective effects of KCa3.1 blockade would be suitable for treating AD as well as cerebrovascular and traumatic brain injuries, two well-known risk factors contributing to the dementia in AD patients presenting with mixed pathologies. Importantly, the pharmacokinetics and pharmacodynamics of several KCa3.1 blockers are well known, and a KCa3.1 blocker has been proven safe in clinical trials. It is therefore promising to reposition old or new KCa3.1 blockers for AD preclinical and clinical trials.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aqilah Hambali ◽  
Jaya Kumar ◽  
Nur Fariesha Md Hashim ◽  
Sandra Maniam ◽  
Muhammad Zulfadli Mehat ◽  
...  

Alzheimer’s disease (AD) is a neurodegenerative disorder that is characterised by the presence of extracellular beta-amyloid fibrillary plaques and intraneuronal neurofibrillary tau tangles in the brain. Recurring failures of drug candidates targeting these pathways have prompted research in AD multifactorial pathogenesis, including the role of neuroinflammation. Triggered by various factors, such as hypoxia, neuroinflammation is strongly linked to AD susceptibility and/or progression to dementia. Chronic hypoxia induces neuroinflammation by activating microglia, the resident immune cells in the brain, along with an increased in reactive oxygen species and pro-inflammatory cytokines, features that are common to many degenerative central nervous system (CNS) disorders. Hence, interests are emerging on therapeutic agents and plant derivatives for AD that target the hypoxia-neuroinflammation pathway. Centella asiatica is one of the natural products reported to show neuroprotective effects in various models of CNS diseases. Here, we review the complex hypoxia-induced neuroinflammation in the pathogenesis of AD and the potential application of Centella asiatica as a therapeutic agent in AD or dementia.


Sign in / Sign up

Export Citation Format

Share Document