Study of the characteristics of a radio photon device for determining the phase difference of a radar signals

2021 ◽  
pp. 38-42
Author(s):  
Yaroslav N. Gusenitsa ◽  
Aleksandr L. Snegirev ◽  
Sergey A. Pokotilo

The paper considers the problem of accurate calculation of the phase of the radar signal in relation to the receiving phased antenna arrays. Methods for determining the phase difference based on a comparison of the received signal with the local oscillator signal are listed, as well as a method based on the use of a radio-photon analog-to-digital converter for the output signal of the receiving phased antenna array. Their disadvantages are indicated. A method and a radio photon device are proposed that are devoid of these disadvantages. The method allows you to calculate the phase difference of the radar signal at the output of the electro-optical modulator and the output signal of the photodetector, taking into account the known values of the amplitudes and phase difference of the microwave signals at the input of the receiving elements of the phased antenna array. The radio-photon device allows you to implement this method and, unlike the known analogues, is based on the use of two parallel-connected electro-optical modulators constructed according to the scheme of the Mach-Zehnder interferometer. It is shown that the proposed radio photon device provides a higher accuracy of determining the phase of the radar signal in comparison with existing analogues. At the end of the work, an analysis of the results of experimental studies using the proposed method and a radio photon device is presented. According to the results of the experiment, it was found that the phase and phase differences vary linearly, and their maximum reaches π. In addition, the square of the amplitude of the optical signal at the input of the photon-electronic unit is proportional to the phase difference and inversely proportional to the ratio of the amplitudes of the output signals of the adjacent receiving elements of the phased antenna arrays.

Author(s):  
N. E. Nenartovich ◽  
V. A. Balagurovsky ◽  
A. O. Manichev

The problem of measuring the parameters of phased antenna arrays without mechanical displacements of the test and / or the auxiliary antenna. Examples demonstrating the high efficiency and practical importance of this approach to measurement.


Author(s):  
S. E. Gavrilova ◽  
A. N. Gribanov ◽  
G. F. Moseychuk ◽  
A. I. Sinani

The study focuses on reconstructing the amplitude-phase distribution of flat multielement passive and active phased antenna arrays with the use of dynamic radiation patterns, measured with electronical scanning without mechanical rotations and antenna movements. The paper describes the measurement settings of dynamic radiation patterns, necessary for reconstructing the amplitude-phase distribution. Findings of the research show that to reconstruct the amplitude-phase distribution according to dynamic radiation diagrams, there is no need for increased computational resources due to the use of Fourier transformation algorithms. After the method was experimentally verified on the specific samples of active phased antenna arrays, its high efficiency was established. The paper gives the examples of reconstructing the amplitude-phase distribution from dynamic radiation patterns in the presence of malfunctions in active phased array antennas.


2021 ◽  
Vol 11 (21) ◽  
pp. 10081
Author(s):  
Brian J. Sánchez ◽  
David H. Covarrubias ◽  
Leonardo F. Yepes ◽  
Marco A. Panduro ◽  
Elizvan Juárez

With the arrival of 5G wireless communication systems, there has been increased interest in exploring higher frequency bands above 6 GHz, up to millimeter-wave frequencies. Radio wave propagation at these higher frequencies can suffer from substantial Doppler impairments. The linear dependency of Doppler shifts with carrier frequencies make them challenging to use in high-mobility 5G cellular scenarios. Therefore, the Doppler power spectrum (DPS) characteristics and radio channel coherence time (CT) of the received signals are of great importance for 5G wireless systems. In this way, this paper presents the effects of a narrow beam phased antenna array in reducing the DPS (due to user movement) and, simultaneously, increasing the coherence time (CT). Functional and complete descriptive assessments of beamwidths versus the DPS and CT, through different elements and geometries of the phased antenna array, are analyzed. Moreover, in terms of CT and the DPS, better performance on the 5G cellular scenarios was obtained.


Author(s):  
N. M. Legkiy ◽  
N. V. Mikheev

Antennas are one of the main elements of radio engineering systems. Phased antenna arrays (PAR), which make it possible to regulate the direction of radiation due to the ability to control the phases or phase differences of the emitted signal, are the most effective types of antennas. The size, design and shape of the PAR depend on the tasks to be solved, the type of emitters and the nature of their location. The article discusses the transformation of an equidistant PAR into a non-equidistant antenna array in order to reduce the level of side lobes and suppress diffraction maxima with a given minimum distance between the emitters. A model of a non-equidistant antenna array and calculation formulas for its analysis are presented. The method presented in the work based on iterative calculation methods makes it possible to select the main parameters of a non-equidistant PAR taking into account the bonds formed between neighboring radiating elements. The coordinates of the emitter elements of the non-equidistant PAR were calculated in a program using the MATLAB language. At the same time, a method was implemented to search for the optimal arrangement of emitters relative to each other, in which the directional pattern of the antenna array will have a minimum level of diffraction maxima and the required level of side lobe. According to the results of the program execution, the coordinates of the new non-equidistant PAR were obtained. The non-equidistant phased array antenna simulated according to the calculation results showed a complete absence of diffraction maxima, in contrast to the equidistant array, but it was not possible to sufficiently obtain the required level of side lobes. The calculated antenna radiation patterns presented for comparison showed the advantages of a non-equidistant antenn array.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
E.N. Mishchenko ◽  
◽  
S.E. Mishchenko ◽  
N.V. Shatskiy ◽  
◽  
...  

n the development of the existing statistical theory of antennas, new analytical relations are obtained for estimating the average radiation pattern of a digital antenna array. These ratios take into account the variance of rounding errors of the weight coefficients, errors in the amplitude and phase calibration of the antenna, jitter noise and rounding errors of the signal at the output of the analog-to-digital converter. It is shown that most of the factors affect the average level of the side lobes, as in analog antenna arrays. However, the variances of the phase calibration errors and the jitter noise determine the contribution of the new term, which has symmetry in the angular coordinate and has an extremums in the direction of the main beam of the antenna array and in the direction that is mirrored relative to the main beam. It is established that the variances of rounding errors depend on the signal-to-noise ratio and, when performing numerical studies, should be estimated based on the results of experimental studies. It is shown that digital processing in a sliding window reduces the average level of the side lobes by separating the spectral components of the signal and noise.


Author(s):  
V. I. Porsev ◽  
A. I. Gelesev ◽  
A. G. Krasko

We analysed existing publications concerning virtual antenna arrays and determined the limitations of using them in radar systems for the case of prior uncertainty regarding angular positions of signal sources. The paper shows that it is possible to increase angular coordinate resolution for the case of prior uncertainty regarding angular positions of signal sources by employing a virtual antenna array at typical signal-to-noise ratios used in radar signal processing. We provide results of simulating the signals numerically, which confirm our analytical calculations.


Author(s):  
O. V. Pavlovich ◽  
A. N. Gribanov ◽  
S. E. Gavrilova ◽  
G. F. Moseychuk ◽  
I. A. Kuznetsov

This paper considers specific features of the phase synthesis of expanded sector beams formed by phased antenna arrays by the method of fan partial diagrams. Partial radiation patterns are formed by pairs of adjacent emitters. The synthesis results have the property of scaling, which allows many expansion options to be obtained on the basis of one expansion option. This is achieved by multiplying the phase shift values of the signals from all emitters by the same value. It is shown that, when the beam expands along the sum channel, a radiation pattern with an extended angular distance between the maxima is formed in the difference channel. An analysis of the initial sections of the difference radiation patterns in the formation of expanded beams of the sum radiation pattern was conducted. The behaviour of the generalized characteristics of expanded beams across the range of expansion coefficients was analysed. The conclusion was made about the possibility of timely and predictable control of the width of the difference radiation pattern of a phased antenna array


Author(s):  
D.A. Semenov ◽  

The principles of radar sounding of lunar soil are revealed. The characteristics of the receiving-transmitting active phased antenna array and the possibility of its use in the transmission/reception of the probing radar signal in the study of lunar soil in the active mode from the flight scientific module are analyzed.


2020 ◽  
Vol 10 (21) ◽  
pp. 7631
Author(s):  
Sergei Shikhantsov ◽  
Arno Thielens ◽  
Sam Aerts ◽  
Leen Verloock ◽  
Guy Torfs ◽  
...  

In the near future, wireless coverage will be provided by the base stations equipped with dynamically-controlled massive phased antenna arrays that direct the transmission towards the user. This contribution describes a computational method to estimate realistic maximum power levels produced by such base stations, in terms of the time-averaged normalized antenna array gain. The Ray-Tracing method is used to simulate the electromagnetic field (EMF) propagation in an urban outdoor macro-cell environment model. The model geometry entities are generated stochastically, which allowed generalization of the results through statistical analysis. Multiple modes of the base station operation are compared: from LTE multi-user codebook beamforming to the more advanced Maximum Ratio and Zero-Forcing precoding schemes foreseen to be implemented in the massive Multiple-Input Multiple-Output (MIMO) communication protocols. The influence of the antenna array size, from 4 up to 100 elements, in a square planar arrangement is studied. For a 64-element array, the 95th percentile of the maximum time-averaged array gain amounts to around 20% of the theoretical maximum, using the Maximum Ratio precoding with 5 simultaneously connected users, assuming a 10 s connection duration per user. Connection between the average array gain and actual EMF levels in the environment is drawn and its implications on the human exposure in the next generation networks are discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Stanislav Ogurtsov ◽  
Diego Caratelli ◽  
Zhe Song

Electronically controlled antenna arrays, such as reconfigurable and phased antenna arrays, are essential elements of high-frequency 5G communication hardware. These antenna arrays are aimed at delivering specified communication scenarios and channel characteristics in the mm-wave parts of the 5G spectrum. At the same time, several challenges are associated with the development of such antenna structures, and these challenges mainly originate from their intended mass production, contemporary manufacturing technologies, integration with active RF chains, compact size, dense circuitry, and limitations in postmanufacturing tuning. Consequently, 5G antenna array designers are presented with contradictory design requirements and constraints. Furthermore, these designers need to handle large numbers of designable parameters of the antenna array models, which can be computationally expensive, especially for repetitive and adaptive simulations that are required in design optimization and tuning. Antenna array synthesis, namely, the process of finding positions, orientation, and excitation of the array radiators, is a challenging yet crucial part of antenna array development. This process ensures that the performance requirements of the antenna array are met. Therefore, there is a need for reliable yet fast automated computer-aided design (CAD) and synthesis tools that can support the development of 5G antenna array solutions, from the initial prototyping stage to the final manufacturing tolerance analysis. This paper presents an overview of recent advances in antenna array synthesis from the viewpoint of their applicability to the design of electronically reconfigurable and phased antenna arrays for wireless communications and remote sensing.


Sign in / Sign up

Export Citation Format

Share Document