scholarly journals In silico analysis of galactinol synthase genes in common bean (Phaseolus vulgaris L.)

2016 ◽  
Vol 19 (4) ◽  
pp. 45-52
Author(s):  
Bang Phi Cao

Galactinol synthases (GolS, EC 2.4.1.123) belong to the glycosyltransferase 8 family. These enzymes catalyzes galactosylation of myo-inositol to form galactinol, precursor of raffinose which is solube sucrose playing an important role in stress tolerance in plants. We identified and analyzed a total of three GolS encoded genes in the whole genome of common bean. These genes possessed two or three introns. The predicted proteins contained from 322 to 340 amino acids. The common bean GolS proteins contained all conseved motifs that were characterized for other previously known GolSs. These proteins were acidic and weakly hydrophilic. The phylogenic tree constructed from GolS proteins of Arabidopsis, poplar and common bean showed that only one gene duplication event was detected in the commone bean genome. Common bean GolS genes expressed in all vegetative and reproductive tissues. However, the transcript abundances of each gene varied in different tissues. When comparing the expression levels of these three genes as defined RNAseq, we found that the expression level of PvGolS2 was the lowest, PvGolS1 expressed the strogest leaves and stem, while PvGolS3 expressed in roots and nodules. We discovered that Rhizobium incubation affected on the expression of GolS genes for the first time. In the reproductive tissues, PvGolS1 expressed in most studied tissues. Its expression level correlatively increased with the tissue development.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Evdoxia Efstathiadou ◽  
Georgia Ntatsi ◽  
Dimitrios Savvas ◽  
Anastasia P. Tampakaki

AbstractPhaseolus vulgaris (L.), commonly known as bean or common bean, is considered a promiscuous legume host since it forms nodules with diverse rhizobial species and symbiovars. Most of the common bean nodulating rhizobia are mainly affiliated to the genus Rhizobium, though strains belonging to Ensifer, Pararhizobium, Mesorhizobium, Bradyrhizobium, and Burkholderia have also been reported. This is the first report on the characterization of bean-nodulating rhizobia at the species and symbiovar level in Greece. The goals of this research were to isolate and characterize rhizobia nodulating local common bean genotypes grown in five different edaphoclimatic regions of Greece with no rhizobial inoculation history. The genetic diversity of the rhizobial isolates was assessed by BOX-PCR and the phylogenetic affiliation was assessed by multilocus sequence analysis (MLSA) of housekeeping and symbiosis-related genes. A total of fifty fast-growing rhizobial strains were isolated and representative isolates with distinct BOX-PCR fingerpriniting patterns were subjected to phylogenetic analysis. The strains were closely related to R. anhuiense, R. azibense, R. hidalgonense, R. sophoriradicis, and to a putative new genospecies which is provisionally named as Rhizobium sp. I. Most strains belonged to symbiovar phaseoli carrying the α-, γ-a and γ-b alleles of nodC gene, while some of them belonged to symbiovar gallicum. To the best of our knowledge, it is the first time that strains assigned to R. sophoriradicis and harbored the γ-b allele were found in European soils. All strains were able to re-nodulate their original host, indicating that they are true microsymbionts of common bean.


2020 ◽  
Author(s):  
Soheila Delgir ◽  
Khandan Ilkhani ◽  
Asma Safi ◽  
Farhad Seif ◽  
Milad Bastami ◽  
...  

Abstract Background Breast cancer (BC) is the most common invasive cancer with different subtypes that its metabolism is unique compared with normal cells. Glutamine is considered a critical nutrition for tumor cell growth and therefore, targeting glutamine metabolism, especially Glutaminase, which catalyzed the conversion of glutamine to glutamate can be beneficial to design anti-cancer agents. Recently, evidence has shown that miRNAs with short length and single strand properties play a significant role in regulating the genes related to glutamine metabolism and may control the development of cancer.Methods Since, in-silico analysis confirmed that miR-513c and miR-3163 might be involved in glutamine metabolism, the expression level of these two miRNAs was evaluated in eighty BC tissues and margin tissues. The data were analyzed to evaluate the correlation between expression level of these miRNAs and patient’s characteristics such as abortion history, family history, and age. Furthermore, in-silico analysis was applied to predict the potential biological processes and molecular pathways of miR-513c and miR-3163 based on its gene targets.Results In-silico studies revealed the top categories of biological processes and pathways that play a critical role in cancer development were target genes for miR-513c and miR-3163. The current study showed that miR-513c (P-value = 0.02062 and fold change= -2.3801) and miR-3163 (P-value = 0.02034 and fold change= -2.3792) were downregulated in tumor tissues compared to margin tissues. Furthermore, the subgroup studies did not show any substantial relationship between expression levels of these two miRNAs and factors such as age, family history cancer, and abortion.Conclusion Based on our data, miR-513c and miR-3163 may be offered as a potential diagnosis and therapeutic targets for patients with BC.


Author(s):  
Kleopatra H. Schulpis ◽  
Georgia Thodi ◽  
Konstantinos Iakovou ◽  
Maria Chatzidaki ◽  
Yannis Dotsikas ◽  
...  

AbstractBackground:Deficiencies of galactokinase (GALK) and UDP-epimerase (GALE) are implicated with galactose metabolic disorders. The aim of the study was the identification of mutations inMethods:Five patients with GALK and five with GALE deficiency were picked up via the Neonatal Screening Program. Additionally, two females, 4 years old, were referred with late diagnosed galactosemia, as rare cases. Mutational analysis was conducted via Sanger sequencing, while in silico analysis tools were utilized for the novel mutation. Psychomotor and speech development tests were performed, as well.Results:The mutation p.Pro28Thr was identified in both alleles in GALK-deficient patients of Roma (gypsy) origin, whereas the novel p.Asn39Ser was detected in two non-Roma patients. In GALE-deficient patients benign and/or likely benign mutations were found. Psychomotor and speech delay were determined in the Roma GALK patients. In each of the late diagnosed females, four mutations were identified in all galactosemia-related genes.Conclusions:The mutational spectrums of GALE- and GALK-deficient patients in Greece are presented for the first time along with a clinical evaluation. Mutational analysis in all galactosemia-related genes of symptomatic patients is highly recommended for future cases.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 633
Author(s):  
Begoña Redruello ◽  
Yasmine Saidi ◽  
Lorena Sampedro ◽  
Victor Ladero ◽  
Beatriz del Rio ◽  
...  

The multiple health benefits attributed to the bioactive compound γ-aminobutyric acid (GABA) have prompted the food industry to investigate the development of functional GABA-rich foods via the use of GABA-producing microorganisms. This study reports the isolation of six GABA-producing Lactococcus lactis strains from camel’s milk; this is the first time that such microorganisms have been isolated from milk. The sequencing and in silico analysis of their genomes, and the characterisation of their technological and safety properties, confirmed their potential as starters. Experimental cheeses made with all six strains (individually) accumulated GABA at concentrations of up to 457 mg/kg. These GABA-producing L. lactis strains could be used as starter cultures for the manufacture of functional GABA-enriched cheeses that provide health benefits to consumers.


2020 ◽  
Vol 3 (5) ◽  
pp. e202000670 ◽  
Author(s):  
Jan Borlinghaus ◽  
Anthony Bolger ◽  
Christina Schier ◽  
Alexander Vogel ◽  
Björn Usadel ◽  
...  

The common foodstuff garlic produces the potent antibiotic defense substance allicin after tissue damage. Allicin is a redox toxin that oxidizes glutathione and cellular proteins and makes garlic a highly hostile environment for non-adapted microbes. Genomic clones from a highly allicin-resistant Pseudomonas fluorescens (PfAR-1), which was isolated from garlic, conferred allicin resistance to Pseudomonas syringae and even to Escherichia coli. Resistance-conferring genes had redox-related functions and were on core fragments from three similar genomic islands identified by sequencing and in silico analysis. Transposon mutagenesis and overexpression analyses revealed the contribution of individual candidate genes to allicin resistance. Taken together, our data define a multicomponent resistance mechanism against allicin in PfAR-1, achieved through horizontal gene transfer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Litzy Ayra ◽  
María del Rocio Reyero-Saavedra ◽  
Mariel C. Isidra-Arellano ◽  
Luis Lozano ◽  
Mario Ramírez ◽  
...  

Plants MADS-domain/AGL proteins constitute a large transcription factor (TF) family that controls the development of almost every plant organ. We performed a phylogeny of (ca. 500) MADS-domain proteins from Arabidopsis and four legume species. We identified clades with Arabidopsis MADS-domain proteins known to participate in root development that grouped legume MADS-proteins with similar high expression in roots and nodules. In this work, we analyzed the role of AGL transcription factors in the common bean (Phaseolus vulgaris) – Rhizobium etli N-fixing symbiosis. Sixteen P. vulgaris AGL genes (PvAGL), out of 93 family members, are expressed – at different levels – in roots and nodules. From there, we selected the PvAGL gene denominated PvFUL-like for overexpression or silencing in composite plants, with transgenic roots and nodules, that were used for phenotypic analysis upon inoculation with Rhizobium etli. Because of sequence identity in the DNA sequence used for RNAi-FUL-like construct, roots, and nodules expressing this construct -referred to as RNAi_AGL- showed lower expression of other five PvAGL genes highly expressed in roots/nodules. Contrasting with PvFUL-like overexpressing plants, rhizobia-inoculated plants expressing the RNAi_AGL silencing construct presented affection in the generation and growth of transgenic roots from composite plants, both under non-inoculated or rhizobia-inoculated condition. Furthermore, the rhizobia-inoculated plants showed decreased rhizobial infection concomitant with the lower expression level of early symbiotic genes and increased number of small, ineffective nodules that indicate an alteration in the autoregulation of the nodulation symbiotic process. We propose that the positive effects of PvAGL TF in the rhizobia symbiotic processes result from its potential interplay with NIN, the master symbiotic TF regulator, that showed a CArG-box consensus DNA sequence recognized for DNA binding of AGL TF and presented an increased or decreased expression level in roots from non-inoculated plants transformed with OE_FUL or RNAi_AGL construct, respectively. Our work contributes to defining novel transcriptional regulators for the common bean – rhizobia N-fixing symbiosis, a relevant process for sustainable agriculture.


Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 917
Author(s):  
Cláudia Gomes ◽  
Maria J. Pons ◽  
Juana del Valle-Mendoza ◽  
Mayumi Matsuoka ◽  
Joaquim Ruiz

Bartonella bacilliformis is the causal agent of Carrion’s disease, an overlooked illness endemic in the Andean Mountains with Peru being the most affected country. The diagnostic of this illness is a challenge due to the limited resources and the common symptomatology with other infectious diseases. The goal of this study was to identify immunogenic peptides from Pap31 and succinyl-CoA synthetase α (SCS-α) of B. bacilliformis that might be suitable for developing a serologic tool. The immunodominant character of Pap31 and SCS-α was determined by Western blotting and in-silico analysis. Subsequently, 35 peptides were selected for epitope mapping and their immunoreactivity was tested by enzyme-linked immunosorbent assay (ELISA). A total of 30 sera were tested including pre-exposed people with high IgM levels for Pap31/SCS-α (23 sera), patients (2 sera) as well as 5 sera with no reactivity to Pap31/SCS-α. The results indicate that Pap31-8 (187QAIGSAILKGTKDTGT202) and SCS-α-12 (59IFASVAEGKEKTGANA74) are the most immunogenic peptides, with Pap31-8 showing potential to discriminate between B. bacilliformis and the remaining Bartonella spp., and SCS-α-12 differentiating Bartonella spp. from other microorganisms.


2020 ◽  
Vol 23 (3) ◽  
pp. 241-251
Author(s):  
Silviany Angelica Fernandes Silva ◽  
Fláive Loyze Baldassarini Silva ◽  
Alessandra Ferreira Ribas ◽  
Silvia Graciele Hülse de Souza ◽  
Tiago Benedito dos Santos

2020 ◽  
Author(s):  
Soheila Delgir ◽  
Khandan Ilkhani ◽  
Asma Safi ◽  
Farhad Seif ◽  
Milad Bastami ◽  
...  

Abstract Background: Breast cancer (BC) is the most common invasive cancer with different subtypes that its metabolism is unique compared with normal cells. Glutamine is considered a critical nutrition for tumor cell growth and therefore, targeting glutamine metabolism, especially Glutaminase, which catalyzed the conversion of glutamine to glutamate can be beneficial to design anti-cancer agents. Recently, evidence has shown that miRNAs with short length and single strand properties play a significant role in regulating the genes related to glutamine metabolism and may control the development of cancer. Methods: Since, in-silico analysis confirmed that miR-513c and miR-3163 might be involved in glutamine metabolism, the expression level of these two miRNAs was evaluated in eighty BC tissues and margin tissues. The data were analyzed to evaluate the correlation between expression level of these miRNAs and patient’s characteristics such as abortion history, family history, and age. Furthermore, in-silico analysis was applied to predict the potential biological processes and molecular pathways of miR-513c and miR-3163 based on its gene targets. Results: In-silico studies revealed the top categories of biological processes and pathways that play a critical role in cancer development were target genes for miR-513c and miR-3163. The current study showed that miR-513c (P-value= 0.02062 and fold change= -2.3801) and miR-3163 (P-value= 0.02034 and fold change= -2.3792) were downregulated in tumor tissues compared to margin tissues. Furthermore, the subgroup studies did not show any substantial relationship between expression levels of these two miRNAs and factors such as age, family history cancer, and abortion. Conclusion: Based on our data, miR-513c and miR-3163 may be offered as a potential diagnosis and therapeutic targets for patients with BC.


Sign in / Sign up

Export Citation Format

Share Document