scholarly journals Influence of thickness on the structure and electrical, optical properties of N-doped SnO2 film

Author(s):  
Nguyen Thanh Tung ◽  
Phuc Huu Dang ◽  
Tran Le

N-doped SnO2 films with varying thickness (320, 420, 520, 620, and 720 nm) were deposited at 300oC in mixed – gas sputtering Ar/N (1:1) using DC magnetron sputtering. Influence of thickness on structure, optical constants (refractive index or extinction coefficient), and electrical properties were investigated by methods such as X-ray diffraction, Uv-Vis spectra, and Hall measurement. The results show that crystalline quality and optical constants improve with increasing thickness. Specifically, NTO – 620 film has the best crystal structure and maximum values ​​such as crystal size, refractive index, and carrier mobility, as well as the lowest extinction coefficient. Also, NTO films have a cubic structure with (111) peak as the preferred peak. Besides, the hole mobility increases with the increase of the thickness and reaches the maximum value of 14.95 cm2V-1s-1 for NTO – 620 films. The electrical properties of p-type NTO films were verified by X-ray electron spectroscopy (XPS) and I-V characteristic of p – NTO/n – Si heterojunction under illumination. P-type NTO – 620 films were fabricated on n-type Si substrate had a light-to-dark current ratio of 58 at - 6V, these results showed that p-type NTO films might have a promising future in optical sensors applications.

Author(s):  
Tran Le ◽  
Huu Phuc Dang

This work studied the effects of Zn and N co-doping on the crystal structure, electrical properties, and photoelectric effects of p-typed Zn-N co-doped SnO2/n-Si heterojunction. Zn and N co-doped SnO2 films (ZNTO) were deposited on n-type Si substrates at 300oC in different sputtering gas mixture Ar/N2 (% N = 0%, 30%, 50%, 60%, 70 % and 80%) from 5 wt% ZnO doped SnO2 target by the DC magnetron sputtering method. The crystal structure, surface morphology, chemical composition, electrical properties, and photoelectric effects of ZNTO films were investigated by measurements such as X-ray diffraction, FESEM, AFM, EDS, Hall, and I-V. The results showed that all films had a rutile structure, and the SnO2 (101) reflection was dominant on the optimal fabrication of 70% N2. Substitution of Sn4+ by Zn2+ and O2􀀀 by N3􀀀 were determined by the X-ray diffraction pattern (XRD) and X-ray energy scattering spectrum (EDS). The lowest resistivity for the ZNTO-5-70 film was r= 6.5010􀀀2 W.cmwith carrier concentration n = 1.461019 cm􀀀3 and hole mobility m = 6.52 cm2.V􀀀1.s􀀀1 respectively. I-V characteristics of the p – ZNTO – 5 – y/n – Si under the illumination condition showed the p-type electrical properties and their application as optical sensors. The ZNTO – 5 – y films' optical response current characteristic had high sensitivity and good reproducibility.


1995 ◽  
Vol 416 ◽  
Author(s):  
S. Han ◽  
G. Rodriguez ◽  
A. Taylori ◽  
M. A. Plano ◽  
M. D. Moyer ◽  
...  

ABSTRACTA high-quality, low-stress 200 gim epitaxial diamond film has been grown on a 400 μm thick high-temperature-high-pressure Ila diamond. X-ray diffraction images of the film indicate that a large region of the film is fairly defect free and individual dislocations have been imaged in this region. Depth-resolved Raman results indicate that the region of the film with a low density of defects also has lower stress than in the higher defect density region. Transient photoconductivity measurements were performed on the high and low line defect density regions of the homoepitaxial diamond film to determine the effects of the stress and defect density on the combined electron-hole mobility and carrier lifetime. The correlation between the electrical properties and the x-ray diffraction imaging suggests that line defects may not be the limiting factor in the carrier transport at the present film quality


2001 ◽  
Vol 680 ◽  
Author(s):  
Kazutoishi Kojima ◽  
Toshiyuki Ohno ◽  
Mituhiro Kushibe ◽  
Koh Masahara ◽  
Yuuki Ishida ◽  
...  

ABSTRACTGrowth and characterization of p-type 4H-SiC epitaxial layers grown on (11-20) substrates are reported. P-type 4H-SiC epilayers with smooth surface morphology have been grown on (11-20) substrates by low-pressure, hot-wall type CVD with SiH4–C3H8–H2–TMA system. The doping concentration can be controlled in the range from about 1×1016cm−3 to 1×1019cm−3. Anisotropy of the crystalline quality is observed by x-ray diffraction measurement. P-type epilayers, in which near band-gap emissions are dominated and D-A pair peak is not observed, are obtained. Hole mobility of (11-20) epilayers is smaller than that of (0001) epilayers probably due to the lack of crystalline quality compared to (0001) epilayers. The results of both low-temperature photoluminescence and the temperature dependence of Hall effect measurements indicate that the boron concentration as undoped impurity in (11-20) epilayer is lower than that of (0001) epilayer. This may be caused by the smaller incorporation efficiency of boron into (11-20) epilayer than that of (0001) epilayer.


2012 ◽  
Vol 501 ◽  
pp. 126-128 ◽  
Author(s):  
Arej Kadhim ◽  
Arshad Hmood ◽  
Abu Hassan Haslan

The thermoelectric materials based on p-type Bi2Se3xTe3 (1-x) bulk products and dispersed with x compositions of Se (x=0.0, 0.2, 0.4, 0.6, 0.8, 1.0) were fabricated using standard solid-state microwave synthesis procedures. The products were characterized by X-ray diffraction (XRD). The XRD characterizations revealed that these products are pure Bi2Te3 and Bi2Se3 with uniform structures. The electrical properties of the Bi2Te3, Bi2Se3 and Bi2Se3xTe3 (1-x) samples were measured in the temperature range of 303–523 K. The highest value of the Seebeck coefficient was 176.3 μV/ K for the Bi2Se0.6Te2.4 sample, but only 149.5 and 87.4 μV/K for the Bi2Te3 and Bi2Se3 samples, respectively.


2010 ◽  
Vol 663-665 ◽  
pp. 361-364
Author(s):  
Yan Yan Zhu ◽  
Ze Bo Fang

Al doped Er2O3 films were deposited on Si(001) substrates by radio frequency magnetron technique. X-ray diffraction and atomic force microscopy show the Al doped Er2O3 films obtained are amorphous and uniform. The optical constants are studied which shows a proper value of refractive index and a lower reflectivity, indicating it could be a usefully material for solar cells.


2019 ◽  
Vol 17 (42) ◽  
pp. 65-75
Author(s):  
Abeer Muhammad Alkhazali

  This work reports the study of heat treatment effect on the structural, morphological, optical and electrical properties of poly [3-hexylthiophene] and its blend with [6,6]-phenyl C61 butyric acid methyl ester ( P3HT:PC61BM). X-ray diffraction (XRD) measurements show that the crystallinity of the films increased with annealing. The evaluation of surface roughness and morphology was investigated using atomic force microscope (AFM), and field emission scanning microscope(FESEM). The optical properties were emphasized a strong optical absorption of P3HT compared with the blend. Hall effect measurement was used to study the electrical properties which revealed there is an increase in the electrical conductivity and Hall mobility of the p-type P3HT and its blend with heat treatment.


2014 ◽  
Vol 11 (3) ◽  
pp. 1257-1260
Author(s):  
Baghdad Science Journal

In this work the effect of annealing temperature on the structure and the electrical properties of Bi thin films was studied, the Bi films were deposited on glass substrates at room temperature by thermal evaporation technique with thickness (0.4 µm) and rate of deposition equal to 6.66Å/sec, all samples are annealed in a vacuum for one hour. The X-ray diffraction analysis shows that the prepared samples are polycrystalline and it exhibits hexagonal structure. The electrical properties of these films were studied with different annealing temperatures, the d.c conductivity for films decreases from 16.42 ? 10-2 at 343K to 10.11?10-2 (?.cm)-1 at 363K. The electrical activation energies Ea1 and Ea2 increase from 0.031 to 0.049eV and from 0.096 to 0. 162 eV with increasing of annealing temperature from 343K to 363K, respectively. Hall measurements showed that all the films are p-type.


1981 ◽  
Vol 4 ◽  
Author(s):  
R. J. Schutz ◽  
G. K. Celler ◽  
C. C. Chang

ABSTRACTPlanar p-n junctions with Pt silicide contacts have been formed by laser irradiating p-type Si/120Å Sb/400Å Pt composite thin film structures. The samples were prepared in a standard e-beam evaporation system. They were never ion implanted. Laser processing was performed with either a scanning cw Ar laser or a Q-switched Nd:YAG (λ = 0.53 μm) laser which provided 100 nsec long pulses. After the irradiations were performed, a p-type Si/n+Si/Pt-Si structure was present. The n+ region resulted from Sb incorporated in the Si lattice. When the same initial composite was furnace annealed, the Sb diffused to the surface and sublimated, leaving a p-type Si/PtSi near-ohmic contact. Depth profiles of the samples were determined with Auger electron spectroscopy. The structure of the Pt-Si layer was studied using wide film Debye X-ray diffraction. The electrical properties of the junctions were examined by measuring their I-V and C-V characteristics and minority carrier lifetimes. Differences in the structural and electrical properties that resulted from the two types of laser irradiation will be discussed.


Author(s):  
A. Kareem Dahash Ali ◽  
Nihad Ali Shafeek

This study included the fabrication of    compound (Tl2-xHgxBa2-ySryCa2Cu3O10+δ) in a manner solid state and under hydrostatic pressure ( 8 ton/cm2) and temperature annealing(850°C), and determine the effect of the laser on the structural and electrical properties elements in the compound, and various concentrations of x where (x= 0.1,0.2,0.3 ). Observed by testing the XRD The best ratio of compensation for x is 0.2 as the value of a = b = 5.3899 (A °), c = 36.21 (A °) show that the installation of four-wheel-based type and that the best temperature shift is TC= 142 K  .When you shine a CO2 laser on the models in order to recognize the effect of the laser on these models showed the study of X-ray diffraction of these samples when preparing models with different concentrations of the values ​​of x, the best ratio of compensation is 0.2 which showed an increase in the values ​​of the dimensions of the unit cell a=b = 5.3929 (A °), c = 36.238 (A°). And the best transition temperature after shedding laser is TC=144 K. 


2021 ◽  
pp. 2100201
Author(s):  
Philipp Jordt ◽  
Stjepan B. Hrkac ◽  
Jorit Gröttrup ◽  
Anton Davydok ◽  
Christina Krywka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document