scholarly journals Correlation of Electrical Properties With Defects in A Homoepitaxial Chemical-Vapor-Deposited Diamond

1995 ◽  
Vol 416 ◽  
Author(s):  
S. Han ◽  
G. Rodriguez ◽  
A. Taylori ◽  
M. A. Plano ◽  
M. D. Moyer ◽  
...  

ABSTRACTA high-quality, low-stress 200 gim epitaxial diamond film has been grown on a 400 μm thick high-temperature-high-pressure Ila diamond. X-ray diffraction images of the film indicate that a large region of the film is fairly defect free and individual dislocations have been imaged in this region. Depth-resolved Raman results indicate that the region of the film with a low density of defects also has lower stress than in the higher defect density region. Transient photoconductivity measurements were performed on the high and low line defect density regions of the homoepitaxial diamond film to determine the effects of the stress and defect density on the combined electron-hole mobility and carrier lifetime. The correlation between the electrical properties and the x-ray diffraction imaging suggests that line defects may not be the limiting factor in the carrier transport at the present film quality

2001 ◽  
Vol 666 ◽  
Author(s):  
Joshua J. Robbins ◽  
Yen-Jung Huang ◽  
Mailasu Bai ◽  
Tyrone Vincent ◽  
Colin A. Wolden

ABSTRACTTin oxide thin films were deposited by plasma-enhanced chemical vapor deposition (PECVD) for applications as a transparent conductor. X-ray diffraction (XRD) and atomic force microscopy (AFM) were used to quantify the crystal structure and morphology of these films both as-deposited and after annealing conditions. Annealing was performed in an argon environment as a function of time and temperature. Although annealing was found to significantly improve electrical properties, the structure as measured by XRD remained largely unchanged. Hall effect measurements show that the improvements in resistivity are due to increases in carrier concentration. XRD did reveal that films deposited on the powered electrode had a film orientation that was distinctly different than films deposited on the grounded electrode. These changes suggest the importance of ion bombardment energy. The structural changes were correlated with improved electrical properties.


Author(s):  
Nguyen Thanh Tung ◽  
Phuc Huu Dang ◽  
Tran Le

N-doped SnO2 films with varying thickness (320, 420, 520, 620, and 720 nm) were deposited at 300oC in mixed – gas sputtering Ar/N (1:1) using DC magnetron sputtering. Influence of thickness on structure, optical constants (refractive index or extinction coefficient), and electrical properties were investigated by methods such as X-ray diffraction, Uv-Vis spectra, and Hall measurement. The results show that crystalline quality and optical constants improve with increasing thickness. Specifically, NTO – 620 film has the best crystal structure and maximum values ​​such as crystal size, refractive index, and carrier mobility, as well as the lowest extinction coefficient. Also, NTO films have a cubic structure with (111) peak as the preferred peak. Besides, the hole mobility increases with the increase of the thickness and reaches the maximum value of 14.95 cm2V-1s-1 for NTO – 620 films. The electrical properties of p-type NTO films were verified by X-ray electron spectroscopy (XPS) and I-V characteristic of p – NTO/n – Si heterojunction under illumination. P-type NTO – 620 films were fabricated on n-type Si substrate had a light-to-dark current ratio of 58 at - 6V, these results showed that p-type NTO films might have a promising future in optical sensors applications.


2000 ◽  
Vol 15 (9) ◽  
pp. 1962-1971 ◽  
Author(s):  
R. E. Koritala ◽  
M. T. Lanagan ◽  
N. Chen ◽  
G. R. Bai ◽  
Y. Huang ◽  
...  

Polycrystalline Pb(ZrxTi1−x)O3 thin films with x = 0.6 and 1.0 were deposited at low temperatures (450–525 °C) on (111)Pt/Ti/SiO2/Si substrates by metalorganic chemical vapor deposition. The films were characterized by x-ray diffraction, electron microscopy, and electrical measurements. The texture of the films could be improved by using one of two template layers: PbTiO3 or TiO2. Electrical properties, including dielectric constants, loss tangents, polarization, coercive field, and breakdown field, were also examined. PbZrO3 films on Pt/Ti/SiO2/Si with a pseudocubic (110) orientation exhibited an electric-field-induced transformation from the antiferroelectric phase to the ferroelectric phase. The effect of varying processing conditions on the microstructure and electrical properties of the films is discussed.


2005 ◽  
Vol 19 (22) ◽  
pp. 1087-1093
Author(s):  
YUAN LIAO ◽  
QINGXUAN YU ◽  
GUANZHONG WANG ◽  
RONGCHUAN FANG

We study the epitaxial growth mechanism of diamond films using various hetero-materials as substrates in a hot-filament chemical vapor deposition (HFCVD) chamber. The same parameters were maintained in the nucleation and growth processes of diamond films on these substrates. The experimental results showed that the dominant orientation of diamond crystals has a relation with that of substrates identified by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The preference of diamond films on non-diamond substrates is explained as heteroepitaxial growth. We think that the initial nucleation process is the key to the heteroepitaxial growth of diamond film.


Author(s):  
Tran Le ◽  
Huu Phuc Dang

This work studied the effects of Zn and N co-doping on the crystal structure, electrical properties, and photoelectric effects of p-typed Zn-N co-doped SnO2/n-Si heterojunction. Zn and N co-doped SnO2 films (ZNTO) were deposited on n-type Si substrates at 300oC in different sputtering gas mixture Ar/N2 (% N = 0%, 30%, 50%, 60%, 70 % and 80%) from 5 wt% ZnO doped SnO2 target by the DC magnetron sputtering method. The crystal structure, surface morphology, chemical composition, electrical properties, and photoelectric effects of ZNTO films were investigated by measurements such as X-ray diffraction, FESEM, AFM, EDS, Hall, and I-V. The results showed that all films had a rutile structure, and the SnO2 (101) reflection was dominant on the optimal fabrication of 70% N2. Substitution of Sn4+ by Zn2+ and O2􀀀 by N3􀀀 were determined by the X-ray diffraction pattern (XRD) and X-ray energy scattering spectrum (EDS). The lowest resistivity for the ZNTO-5-70 film was r= 6.5010􀀀2 W.cmwith carrier concentration n = 1.461019 cm􀀀3 and hole mobility m = 6.52 cm2.V􀀀1.s􀀀1 respectively. I-V characteristics of the p – ZNTO – 5 – y/n – Si under the illumination condition showed the p-type electrical properties and their application as optical sensors. The ZNTO – 5 – y films' optical response current characteristic had high sensitivity and good reproducibility.


2001 ◽  
Vol 664 ◽  
Author(s):  
A. H. Mahan ◽  
Y. Xu ◽  
E. Iwaniczko ◽  
D. L. Williamson ◽  
W. Beyer ◽  
...  

ABSTRACTThe structure of a-Si:H, deposited at rates in excess of 100Å/s by the hot wire chemical vapor deposition (HWCVD) technique, has been examined by x-ray diffraction (XRD), Raman spectroscopy, H evolution, and small-angle x-ray scattering (SAXS). As the film deposition rate (Rd) is increased, we find that the XRD, Raman and the H evolution peak curves are invariant with Rd, and exhibit structure consistent with state-of-the-art, compact a-Si:H films deposited at low Rd. The only exception is the SAXS signal, which increases by a factor of ∼100 over that for our best low Rd films. We relate changes in the film electronic structure (Urbach edge) to the increase in the SAXS signals. We also note the invariance of the saturated defect density versus Rd, and discuss possible reasons why the increase in the SAXS does not play a role in the Staebler-Wronski Effect for this type of material. Finally, device results are presented.


Author(s):  
A. Kareem Dahash Ali ◽  
Nihad Ali Shafeek

This study included the fabrication of    compound (Tl2-xHgxBa2-ySryCa2Cu3O10+δ) in a manner solid state and under hydrostatic pressure ( 8 ton/cm2) and temperature annealing(850°C), and determine the effect of the laser on the structural and electrical properties elements in the compound, and various concentrations of x where (x= 0.1,0.2,0.3 ). Observed by testing the XRD The best ratio of compensation for x is 0.2 as the value of a = b = 5.3899 (A °), c = 36.21 (A °) show that the installation of four-wheel-based type and that the best temperature shift is TC= 142 K  .When you shine a CO2 laser on the models in order to recognize the effect of the laser on these models showed the study of X-ray diffraction of these samples when preparing models with different concentrations of the values ​​of x, the best ratio of compensation is 0.2 which showed an increase in the values ​​of the dimensions of the unit cell a=b = 5.3929 (A °), c = 36.238 (A°). And the best transition temperature after shedding laser is TC=144 K. 


2021 ◽  
pp. 2100201
Author(s):  
Philipp Jordt ◽  
Stjepan B. Hrkac ◽  
Jorit Gröttrup ◽  
Anton Davydok ◽  
Christina Krywka ◽  
...  

Author(s):  
Mingqiang Zhong ◽  
Qin Feng ◽  
Changlai Yuan ◽  
Xiao Liu ◽  
Baohua Zhu ◽  
...  

AbstractIn this work, the (1−x)Bi0.5Na0.5TiO3-xBaNi0.5Nb0.5O3 (BNT-BNN; 0.00 ⩽ x ⩽ 0.20) ceramics were prepared via a high-temperature solid-state method. The crystalline structures, photovoltaic effect, and electrical properties of the ceramics were investigated. According to X-ray diffraction, the system shows a single perovskite structure. The samples show the normal ferroelectric loops. With the increase of BNN content, the remnant polarization (Pr) and coercive field (Ec) decrease gradually. The optical band gap of the samples narrows from 3.10 to 2.27 eV. The conductive species of grains and grain boundaries in the ceramics are ascribed to the double ionized oxygen vacancies. The open-circuit voltage (Voc) of ∼15.7 V and short-circuit current (Jsc) of ∼1450 nA/cm2 are obtained in the 0.95BNT-0.05BNN ceramic under 1 sun illumination (AM1.5G, 100 mW/cm2). A larger Voc of 23 V and a higher Jsc of 5500 nA/cm2 are achieved at the poling field of 60 kV/cm under the same light conditions. The study shows this system has great application prospects in the photovoltaic field.


Sign in / Sign up

Export Citation Format

Share Document