scholarly journals Brick Sector and Air Quality: An Integrated Assessment towards 2020 Challenge of Environment Development

2021 ◽  
Vol 19 (2) ◽  
pp. 153-164
Author(s):  
Shazia Pervaiz ◽  
◽  
Muhammad Ameer Nawaz Akram ◽  
Filza Zafar Khan ◽  
Kanwal Javid ◽  
...  

Brick sector is a mainstay of the urban economy of Punjab. The traditional technology of brick making emits a lot of toxic gases and smoke particulates into air. Hence, the Government of the Punjab, Pakistan announced a ban on low technology brick kiln operations during winter season by the end of December 2020. Initially, the existing set up of brick kilns and air pollution levels were evaluated before and during lockdown period using spatial application. Further, environmental parameters such as aerosols, carbon monoxide, ozone, sulfur dioxide and carbon dioxide were determined to analyze the air quality, including metrological factors. Results of the study exhibited that the upper and central regions of Punjab are the major hubs of brick kilns. So, the level of air quality was inconsistent in the study period due to the existence of large mushrooms of brick kilns. Further, despite lockdown the highest concentration of carbon monoxide was recorded in the eastern side of the province, such as Kasur, Lahore, and Sheikhupura. The level of aerosols also fluctuated and shifted its trends in the central and southern part of the province. While SO2 and CO2 level declined and revealed a satisfactory level of air quality during shutdown. On the other hand, no significant relation to metrological factors, such as rain, is involved in the pollution reduction. Conclusively, the findings of the present study encourage the government agencies to realign the stringent control measures to improve the quality of air in the winter months using the experience of quarantine in 2020.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Linda Petrone ◽  
Gilda Cuzzi ◽  
Lidia Colace ◽  
Giuseppe Maria Ettorre ◽  
Elisa Busi-Rizzi ◽  
...  

Background. Cystic echinococcosis (CE) is a chronic, clinically complex, and neglected disease. Its prevalence in Italy, a country of medium to high endemicity, remains poorly defined, as notification has long ceased to be mandatory.Methods. We set up a retrospective cohort study involving all CE patients followed at our institute between January 2005 and December 2012. Demographical and clinical features were recorded and analyzed.Results. CE was found in 28 patients (64.3%), mostly Italians from the central regions (50%), followed by subjects from the islands (33.3%) and Southern Italy (16.7%). Their median age was 45 years (IQR: 38.5–66.5), with Eastern Europeans being significantly younger (28 years, IQR: 19–39) than other patients (P≤0.0001). A total of 149 cysts, mostly with hepatic localization (96%), were described. Based on the WHO classification, the cysts were mainly small (80.5%) and active (CE1 (73.8%); CE2 (7.4%)). Active cysts were more common in Eastern Europeans (85.7%) than Italians (66.7%).Conclusion. Our data confirm CE occurrence in Italy. We emphasize the importance to have a national CE registry, opportunely recently introduced. This is essential to assess CE prevalence in this country, implement appropriate control measures, and improve patient management.


2021 ◽  
Author(s):  
Wojciech Nazar ◽  
Katarzyna Plata-Nazar

Abstract Background Decreased air quality is connected to a higher number of hospital admissions and an increase in daily mortality rates. Thus, Poles’ behavioural response to sometimes elevated air pollution levels is vital. The aim of this study was to carry out analysis of changes in air-pollution related information seeking behaviour in response to nationwide reported air quality in Poland. Methods Google Trends Search Volume Index data was used to investigate Poles’ interest in air pollution-related keywords. PM10 and PM2.5 concentrations measured across Poland between 2016 and 2019 were collected from the Chief Inspectorate of Environmental Protection databases. Pearson Product-Moment Correlation and the R2 correlation coefficient of determination were used to measure spatial and seasonal correlations between reported air pollution levels and the popularity of search queries. Results The highest PM10 and PM2.5 concentrations were observed in southern voivodeships and during the winter season. Similar trends were observed for Poles’ interest in air-pollution related keywords. All R2 coefficient of determination values were > 0.5 and all correlations were statistically significant. Conclusion Poland’s air quality does not meet the World Health Organisation guidelines. Also, the air quality is lower in southern Poland and during the winter season. It appears that Poles are aware of this issue and search for daily air quality data in their location. Greater interest in air quality data in Poland strongly correlates with both higher regional and higher seasonal air pollution levels.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Zhifang Wang ◽  
Fengjie Zheng ◽  
Wenhao Zhang ◽  
Shutao Wang

Sulfur dioxide (SO2) in the planetary boundary layer (PBL) as a kind of gaseous pollutant has a strong effect regarding atmospheric environment, air quality, and climate change. As one of the most polluted regions in China, air quality in Beijing-Tianjin-Hebei (BTH) region has attracted more attention. This paper aims to study the characteristics of SO2 distribution and variation over BTH. Spatial and temporal variations for a long term (2006–2017) over BTH derived from OMI PBL SO2 products were discussed. The temporal trends confirm that the SO2 loading falls from average 0.88 DU to 0.16 DU in the past 12 years. Two ascending fluctuations in 2007 and 2011 appeared to be closely related to the economic stimulus of each five-year plan (FYP). The spatial analysis indicates an imbalanced spatial distribution pattern, with higher SO2 level in the southern BTH and lower in the northern. This is a result of both natural and human factors. Meanwhile, the SO2 concentration demonstrates a decreasing trend with 14.92%, 28.57%, and 27.43% compared with 2006, during the events of 2008 Olympic Games, 2014 Asia-Pacific Economic Cooperation (APEC) summit, and 2015 Military Parade, respectively. The improvement indicates that the direct effect is attributed to a series of long-term and short-term control measures, which have been implemented by the government. The findings of this study are desirable to assist local policy makers in the BTH for drawing up control strategies regarding the mitigation of environmental pollution in the future.


Author(s):  
Ahmad Kamruzzaman Majumder ◽  
V Krishna Murthy ◽  
Sanjay Nath Khanal ◽  
Dhiraj Giri

This study comprised of air quality monitoring during the day time at three municipalities of Banepa, Dhulikhel and Panauti(Known as Banepa Valley) in Kavre district of Nepal. The study was conducted in order to establish a baseline air quality data for those municipalities as the first time ever in the district. In each of those municipalities three air monitoring stations were established representing predominant industrial, commercial and residential areas. Nitrogen Dioxide (NO2) had been estimated from air sampling programme which spanned 7 months and a total of 126 days reflecting winter, premonsoon and monsoon seasons. Low Volume Air (LVA) Sampler and Personal air sampler were used for sampling. UV spectrophotometer was used for estimation of the NO2. The study found that during winter season the concentration of NO2 was more and among the areas commercial area found to be highest level pollution. The over all mean, minimum and maximum level of NO2 was found to be 24.62μg/m3, 11.26μg/m3, 91.20μg/m3 in the Banepa valley. The seasonal trend in pollution levels show that winter > pre-monsoon > monsoon. The pollution concentration trend noted among the areas was commercial > industrial > residential on almost all the occasions. This finding conclude that, most of the time NO2 level are below the National Ambient Air Quality Standards (NAAQS) and World Health Organization (WHO) guideline representing little risk at present in Banepa Valley however commercial area of Banepa is more polluted and is associated with higher NO2 concentration compared to other areas. Keywords: NO2, Nepal, Banepa, air quality, personal air sampler DOI: 10.3126/kuset.v4i1.2878 Kathmandu University Journal of Science, Engineering and Technology Vol.4, No.1, September 2008, pp 1-11


2021 ◽  
Author(s):  
Yi-Nan Lin ◽  
Sheng-Kuan Wang ◽  
Gwo-Jen Chiou ◽  
Cheng-Ying Yang ◽  
Victor R. L. Shen ◽  
...  

Abstract An IoT (Internet of Things) system for monitoring campus environmental parameters was successfully developed in this study. Various sensors were adopted in the front of IoT system for sensing air pollutants. The architecture of LongRange (LoRa) in Class C uses low-power and long-distance transmission technologies, which has been set up on the large campus, so that the terminal equipment can reach a balance between downlink latency and battery life, making it the best transmission communication protocol. In addition, this monitoring system uses the Petri net software tool to build a correct IoT platform based on the fundamental working processes, and to demonstrate the feasibility of the IoT system through simulation-based verification. Finally, the experimental results have shown that the IoT system for monitoring the campus environmental parameters achieves the goal of an acceptable data transmission success rate of more than 95%. Thus, it can facilitate the air quality trends for policy making as well as the hazardous prediction and prevention.


2022 ◽  
Vol 9 ◽  
Author(s):  
Weicai Peng ◽  
Xiangguo Liu ◽  
Farhad Taghizadeh-Hesary

In this article, we adopt an improved double-weighted fuzzy comprehensive evaluation method to investigate the air condition of Hefei City from July 2016 to July 2021. We focus on the impact of the toxicity index, especially the impact of carbon monoxide, which is also considered in some other kinds of quality evaluation, such as water classification. Firstly, we found that with the increasing awareness of environmental protection and with the attention of the government to the quality of air in recent years, the air conditions have become better (the grades become lower). Secondly, the value of the factors, PM2.5, PM10, SO2, CO, NO2, and O3 periodically fluctuate from year to year; and the periodicity of O3 is reversed with the other factors. Finally, the monthly average analysis shows that the overall air quality is good; all the grades are I-II, except for December 2017 which has a grade III. Furthermore, the air quality in the winter (especially in December and January) is not always good.


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1338
Author(s):  
Muhammad Aamir ◽  
Zeyun Li ◽  
Sibghatullah Bazai ◽  
Raja Asif Wagan ◽  
Uzair Aslam Bhatti ◽  
...  

Mitigation measures and control strategies relating to the novel coronavirus disease 2019 (COVID-19) have been widely applied in many countries to reduce the transmission of this pandemic disease. China was the first country to implement a strong lockdown policy to control COVID-19 when countries worldwide were struggling to manage COVID-19 cases. However, lockdown causes numerous changes to air-quality patterns due to the low amount of traffic and the decreased human mobility it results in. To study the impact of the strict control measures of the new COVID-19 epidemic on the air quality of Hubei in early 2020, the air-quality monitoring data of Hubei’s four cities, namely Huangshi, Yichang, Jingzhou, and Wuhan, from 2019 to 2021, specifically 1 January to 30 August, was examined to analyze the characteristics of the temporal and spatial distribution. All air-quality pollutants decreased during the active-COVID-19 period, with a maximum decrease of 26% observed in PM10, followed by 23% of PM2.5, and a minimum decrease of 5% observed in O3. Changes in air pollutants from 2017 to 2021 were also compared, and a decrease in all pollutants through to 2020 was found. The air-quality index (AQI) recorded an increase of 2% post-COVID-19, which shows that air quality will worsen in future, but it decreased by 22% during the active-COVID-19 period. A path analysis model was developed to further understand the relationship between the AQI and air-quality patterns. This path analysis shows a strong correlation between the AQI and PM10 and PM2.5, however its correlation with other air pollutants is weak. Regression analysis shows a similar pattern of there being a strong relationship between AQI and PM10 (r2 = 0.97) and PM2.5 (r2 = 0.93). Although the COVID-19 pandemic had numerous negative effects on human health and the global economy, it is likely that the reduction in air pollution and the significant improvement in ambient air quality due to lockdowns provided substantial short-term health benefits. The government must implement policies to control the environmental issues which are causing poor air quality in post-COVID-19.


2021 ◽  
Author(s):  
Michael R Giordano ◽  
Julien Bahino ◽  
Matthias Beekmann ◽  
Ramachandran Subramanian ◽  

<div> <div> <p>Air pollution is responsible for seven million premature deaths each year, linked to numerous cardiovascular and other diseases. Both monitoring pollution levels and identifying sources is necessary to reduce overall exposure. Many parts of Africa suffer from extreme pollution levels, but the cost of traditional air quality monitoring leads to a significant data gap, which also hinders the development of local capacity to do these tasks. In order to overcome these obstacles, the “Make Air Quality Great Again” (MAQGA) project was funded by the French Agence nationale de la recherché (ANR) under the MOPGA program. The MAQGA project in turn set up the AfriqAir consortium, a global organization that brings together air quality scientists and researchers interested in using air quality data to tackle air quality problems in Africa. Now entering its third year of existence, the consortium has made real strides in increasing the number of air quality monitors in Africa as well as building capacity with local researchers and partners across the continent. This presentation will provide a recap of what the consortium has achieved with ANR and MOPGA support, how we have persevered through the COVID-19 pandemic, and our plans for the immediate and long-term futures. This presentation will cover the scientific gains made by connecting African air quality researchers as well as the successes aided by the network building that AfriqAir has facilitated. </p> </div> </div>


2021 ◽  
Vol 13 (19) ◽  
pp. 3987
Author(s):  
Ukkyo Jeong ◽  
Hyunkee Hong

Atmospheric carbon monoxide (CO) significantly impacts climate change and human health, and has become the focus of increased air quality and climate research. Since 2018, the Troposphere Monitoring Instrument (TROPOMI) has provided total column amounts of CO (CTROPOMI) with a high spatial resolution to monitor atmospheric CO. This study compared and assessed the accuracy of CTROPOMI measurements using surface in-situ measurements (SKME) obtained from an extensive ground-based network over South Korea, where CO level is persistently affected by both local emissions and trans-boundary transport. Our analysis reveals that the TROPOMI effectively detected major emission sources of CO over South Korea and efficiently complemented the spatial coverage of the ground-based network. In general, the correlations between CTROPOMI and SKME were lower than those for NO2 reported in a previous study, and this discrepancy was partly attributed to the lower spatiotemporal variability. Moreover, vertical CO profiles were sampled from the ECMWF CAMS reanalysis data (EAC4) to convert CTROPOMI to surface mixing ratios (STROPOMI). STROPOMI showed a significant underestimation compared with SKME by approximately 40%, with a moderate correlation of approximately 0.51. The low biases of STROPOMI were more significant during the winter season, which was mainly attributed to the underestimation of the EAC4 CO at the surface. This study can contribute to the assessment of satellite and model data for monitoring surface air quality and greenhouse gas emissions.


Author(s):  
N. M. Sari ◽  
M. N. S. Kuncoro

The COVID-19 pandemic has had a major impact on various sectors. Iran is one of the countries most affected by this pandemic. After considering the huge impact, the government imposed strict rules prohibiting social gatherings and restricting travel for the entire population following the large number of victims in the country. These restrictions lead to changes in the environment, especially air quality. The purpose of this study was to find out how the COVID-19 pandemic affected air quality in Iran following the activity restrictions in the region. The method used in this research was based on the use of multitemporal Sentinel-5P data processing with scripts available on the Google Earth Engine applied on the images, acquired in the period before and after the COVID-19 pandemic. The data used included the image collection of Sentinel-5P NRTI CO: Near Real-Time Carbon Monoxide, Sentinel-5P NRTI NO2: Near Real-Time Nitrogen Dioxide and Sentinel-5P NRTI SO2: Near Real-Time Sulphur Dioxide. The results showed, that for Iran in general, changes in the concentration of CO are clearly visible in urban areas with high population activity such as Tehran, where there was a decrease from 0.05 to 0.0286 mol/m2, while for other areas it is also influenced by the varying climate conditions, which affect the level of pollution. For the NO2 pollutant, there was a significant decrease in pollution levels in big cities such as Tehran, Qom, Isfahan and Mashhad from 0.0002 to 0.000114 mol/m2. For the SO2 pollutant, there was a decrease in pollution levels in Iran’s big cities from 0.0005 to 0.0000714 mol/m2. For Tehran province, which is the most populous and busiest province in Iran, it can be observed that there was also a decrease in the concentration of pollutants after the lockdown compared to the pre-lockdown period. The CO concentration decreased from 0.043 to 0.036 mol/m2, while for the NO2 pollutant there was a decrease from 0.0002 to 0.000142 mol/m2 and for the SO2 pollutant, there was a decrease from 0.0005 to 0.000143 mol/m2.


Sign in / Sign up

Export Citation Format

Share Document