scholarly journals Evaluation of expression profile of miRNAs with regulatory functions in metabolic pathways and signaling of parasitic diseases

Background: MicroRNAs (miRNAs) are a subset of small regulatory RNAs that are expressed by almost all metazoans and protozoans. They express genes either by direct cleavage or by suppressing the translation of target mRNAs by partial complementary base pairing. The active and functional unit of miRNA is a complex of Argonaute proteins known as microRNA-induced silencing complex (miRISC). They are known to regulate various growth and physiological processes. Irregular expression of miRNA in human cells is associated with a variety of disorders such as cancer, cardiovascular dysfunction, liver damage, immune dysfunction, metabolic syndromes, and pathogenic infections. A growing number of studies have shown that miRNAs are in fact a major component of host interactions and pathogens and play an important role in host immune responses to microorganisms. Emerging miRNAs are recognized as important tools for the genetic study, therapeutic development, and diagnosis of human pathogenic infections caused by various pathogenic organisms such as viruses, bacteria, parasites, and fungi. Many pathogens use the host miRNA system for their own benefits, including pathogenesis, survival within the host cell, and crossing some host immune barriers. Other pathogens express their miRNA within the host and contribute to their replication, survival, or delay. This article aims to review the role and importance of miRNA in relation to some important parasitic diseases.

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 639
Author(s):  
Domenico Ribatti ◽  
Francesco Pezzella

Angiogenesis is a crucial event in the physiological processes of embryogenesis and wound healing. During malignant transformation, dysregulation of angiogenesis leads to the formation of a vascular network of tumor-associated capillaries promoting survival and proliferation of the tumor cells. Starting with the hypothesis formulated by Judah Folkman that tumor growth is angiogenesis-dependent, this area of research has a solid scientific foundation and inhibition of angiogenesis is a major area of therapeutic development for the treatment of cancer. Over this period numerous authors published data of vascularization of tumors, which attributed the cause of neo-vascularization to various factors including inflammation, release of angiogenic cytokines, vasodilatation, and increased tumor metabolism. More recently, it has been demonstrated that tumor vasculature is not necessarily derived by endothelial cell proliferation and sprouting of new capillaries, but alternative vascularization mechanisms have been described, namely vascular co-option and vasculogenic mimicry. In this article, we have analyzed the mechanisms involved in tumor vascularization in association with classical angiogenesis, including post-natal vasculogenesis, intussusceptive microvascular growth, vascular co-option, and vasculogenic mimicry. We have also discussed the role of these alternative mechanism in resistance to anti-angiogenic therapy and potential therapeutic approaches to overcome resistance.


Vision ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 6
Author(s):  
Feipeng Wu ◽  
Yin Zhao ◽  
Hong Zhang

The autonomic nervous system (ANS) confers neural control of the entire body, mainly through the sympathetic and parasympathetic nerves. Several studies have observed that the physiological functions of the eye (pupil size, lens accommodation, ocular circulation, and intraocular pressure regulation) are precisely regulated by the ANS. Almost all parts of the eye have autonomic innervation for the regulation of local homeostasis through synergy and antagonism. With the advent of new research methods, novel anatomical characteristics and numerous physiological processes have been elucidated. Herein, we summarize the anatomical and physiological functions of the ANS in the eye within the context of its intrinsic connections. This review provides novel insights into ocular studies.


Author(s):  
Yapeng Su ◽  
Daniel Chen ◽  
Christopher Lausted ◽  
Dan Yuan ◽  
Jongchan Choi ◽  
...  

SUMMARYHost immune responses play central roles in controlling SARS-CoV2 infection, yet remain incompletely characterized and understood. Here, we present a comprehensive immune response map spanning 454 proteins and 847 metabolites in plasma integrated with single-cell multi-omic assays of PBMCs in which whole transcriptome, 192 surface proteins, and T and B cell receptor sequence were co-analyzed within the context of clinical measures from 50 COVID19 patient samples. Our study reveals novel cellular subpopulations, such as proliferative exhausted CD8+ and CD4+ T cells, and cytotoxic CD4+ T cells, that may be features of severe COVID-19 infection. We condensed over 1 million immune features into a single immune response axis that independently aligns with many clinical features and is also strongly associated with disease severity. Our study represents an important resource towards understanding the heterogeneous immune responses of COVID-19 patients and may provide key information for informing therapeutic development.


2020 ◽  
Vol 73 (4) ◽  
pp. 380
Author(s):  
John S. Albin ◽  
Bradley L. Pentelute

Organisms from all kingdoms of life have evolved a vast array of peptidic natural products to defend against microbes. These are known collectively as antimicrobial peptides (AMPs) or host defence peptides, reflecting their abilities not only to directly kill microbes, but also to modulate host immune responses. Despite decades of investigation, AMPs have yet to live up to their promise as lead therapeutics, a reality that reflects, in part, our incomplete understanding of these diverse agents in their various physiological contexts. Towards improving our understanding of AMP biology and the ways in which this can be best leveraged for therapeutic development, we are interested in large-scale comparisons of the antimicrobial and immunological activities of human AMPs, an undertaking that requires an efficient workflow for AMP synthesis and subsequent characterization. We describe here the application of flow chemistry and reverse-phase flash chromatography to the generation of 43AMPs, approaches that, when combined, significantly expedite synthesis and purification, potentially facilitating more systematic approaches to downstream testing and engineering.


2020 ◽  
Vol 16 (4) ◽  
pp. 399-418
Author(s):  
Jia Feng ◽  
Ahmed Waqas ◽  
Zhihan Zhu ◽  
Lukui Chen

Exosomes are small extracellular vesicles of 30–150 nm diameter secreted by almost all cells. In recent years, with continuous deeper understanding of exosomes physiological functions, different reports have proven that exosomes can facilitate cell-to-cell communication by binding to target cells and transferring their contents, together with RNAs, DNAs, proteins, and lipids between cells and tissues. With advantages that exosomes can be involved in various types of physiological processes, such as blood coagulation, cellular homeostasis, inflammation, immune surveillance, stem cell differentiation, neuroprotection, and tissue regeneration and angiogenesis. Exosomes have been demonstrated that they can be applied in identification and treatment of multiple disorders such as cancers, cerebral ischemia, and respiratory infectious diseases. Importantly, researchers utilize application of exosomes in the treatment of various respiratory infectious diseases that have made some breakthrough progress. However, with the global pandemic of Coronavirus Disease 2019 (COVID-19), we have focused on applications of exosomes in respiratory infectious diseases and their serious complications, including influenza, TB, ARDS and sepsis. In this review, we explain the use of exosomes in various respiratory infectious diseases and their serious complications, and hope to provide new ideas for the treatment of new coronavirus infections.


Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4456
Author(s):  
Yunqi Cheng ◽  
Hongping Chen

Zinc, an essential micronutrient in the human body, is a component in over 300 enzymes and participates in regulating enzymatic activity. Zinc metalloenzymes play a crucial role in physiological processes including antioxidant, anti-inflammatory, and immune responses, as well as apoptosis. Aberrant enzyme activity can lead to various human diseases. In this review, we summarize zinc homeostasis, the roles of zinc in zinc metalloenzymes, the physiological processes of zinc metalloenzymes, and aberrant zinc metalloenzymes in human diseases. In addition, potential mechanisms of action are also discussed. This comprehensive understanding of the mechanisms of action of the regulatory functions of zinc in enzyme activity could inform novel zinc-micronutrient-supply strategies for the treatment of diseases.


2020 ◽  
Vol 218 (2) ◽  
Author(s):  
Miguel Palomino-Segura ◽  
Andrés Hidalgo

Immune responses are gated to protect the host against specific antigens and microbes, a task that is achieved through antigen- and pattern-specific receptors. Less appreciated is that in order to optimize responses and to avoid collateral damage to the host, immune responses must be additionally gated in intensity and time. An evolutionary solution to this challenge is provided by the circadian clock, an ancient time-keeping mechanism that anticipates environmental changes and represents a fundamental property of immunity. Immune responses, however, are not exclusive to immune cells and demand the coordinated action of nonhematopoietic cells interspersed within the architecture of tissues. Here, we review the circadian features of innate immunity as they encompass effector immune cells as well as structural cells that orchestrate their responses in space and time. We finally propose models in which the central clock, structural elements, and immune cells establish multidirectional circadian circuits that may shape the efficacy and strength of immune responses and other physiological processes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kim van Noort ◽  
Dieu-Linh Nguyen ◽  
Verena Kriechbaumer ◽  
Chris Hawes ◽  
Cornelis H. Hokke ◽  
...  

Abstract Helminth parasites secrete a wide variety of immunomodulatory proteins and lipids to dampen host immune responses. Many of these immunomodulatory compounds are modified with complex sugar structures (or glycans), which play an important role at the host–parasite interface. As an example, the human blood fluke Schistosoma mansoni produces highly fucosylated glycan structures on glycoproteins and glycolipids. Up to 20 different S. mansoni fucosyltransferase (SmFucT) genes can be found in genome databases, but thus far only one enzyme has been functionally characterized. To unravel the synthesis of highly fucosylated N-glycans by S. mansoni, we examined the ability of ten selected SmFucTs to modify N-glycans upon transient expression in Nicotiana benthamiana plants. All enzymes were localized in the plant Golgi apparatus, which allowed us to identify the SmFucTs involved in core fucosylation and the synthesis of complex antennary glycan motifs. This knowledge provides a starting point for investigations into the role of specific fucosylated glycan motifs of schistosomes in parasite-host interactions. The functionally characterized SmFucTs can also be applied to synthesize complex N-glycan structures on recombinant proteins to study their contribution to immunomodulation. Furthermore, this plant expression system will fuel the development of helminth glycoproteins for pharmaceutical applications or novel anti-helminth vaccines.


Author(s):  
Russell G. Foster ◽  
Leon Kreitzman

‘Circadian rhythms: A 24-hour phenomenon’ explains the internally generated ‘clock’ that almost all living beings on Earth possess, which allows them to optimize a vast array of physiological processes and behaviour in advance of the varied demands of the daily solar cycle. Circadian rhythms are encoded in organisms’ genes, endogenously generated, and show near 24-hour rhythms in biological processes. They persist under constant conditions for several cycles, are entrained to the astronomical day via synchronizing zeitgebers, and show temperature compensation such that the period of the oscillation does not alter appreciably with changes in environmental temperature.


2016 ◽  
Vol 40 (3) ◽  
pp. 313-318 ◽  
Author(s):  
Niels Bonderup Dohn ◽  
Angela Fago ◽  
Johannes Overgaard ◽  
Peter Teglberg Madsen ◽  
Hans Malte

The laboratory has been given a central role in physiology education, and teachers report that it is motivating for students to undertake experimental work on live animals or measuring physiological responses on the students themselves. Since motivation is a critical variable for academic learning and achievement, then we must concern ourselves with questions that examine how students engage in laboratory work and persist at such activities. The purpose of the present study was to investigate how laboratory work influences student motivation in physiology. We administered the Lab Motivation Scale to assess our students' levels of interest, willingness to engage (effort), and confidence in understanding (self-efficacy). We also asked students about the role of laboratory work for their own learning and their experience in the physiology laboratory. Our results documented high levels of interest, effort, and self-efficacy among the students. Correlation analyses were performed on the three motivation scales and exam results, yet a significant correlation was only found between self-efficacy in laboratory work and academic performance at the final exam. However, almost all students reported that laboratory work was very important for learning difficult concepts and physiological processes (e.g., action potential), as the hands-on experiences gave a more concrete idea of the learning content and made the content easier to remember. These results have implications for classroom practice as biology students find laboratory exercises highly motivating, despite their different personal interests and subject preferences. This highlights the importance of not replacing laboratory work by other nonpractical approaches, for example, video demonstrations or computer simulations.


Sign in / Sign up

Export Citation Format

Share Document