scholarly journals Числове та експериментальне дослідження наповнення резервуару компонентом газової суміші

2021 ◽  
pp. 63-72
Author(s):  
Ольга Володимирівна Шипуль ◽  
Сергій Олександрович Заклінський ◽  
Володимир Вікторович Комбаров ◽  
Олексій Анатолійович Павленко ◽  
Вадим Олегович Гарін

The subject of the research is mathematical models of a gas-dynamic non-stationary process of filling a vessel with a component of a gas mixture. The aim of the study is the scientific and experimental substantiation of the choice of a model of filling a vessel with a component of a gas mixture with a given accuracy. The objectives of the study are to conduct full-scale experiments on filling the vessel with gas for further verification of the gas mixture generation control system, as well as in the development of adequate mathematical models of gas-dynamic flow, the analysis of simulation results, and the use of verified results in the system of automated generation of a gas mixture of a given accuracy by assessing the mass of its components depending on the filling parameters. The tasks are solved by studying the results of numerical modeling of the process and full-scale experiments. The following results are obtained. A series of full-scale experiments on filling a vessel with high-frequency monitoring of the pressure and temperature of the gas being filled was carried out. Significant factors were analyzed. The use of SAS SST turbulence models was substantiated. Models of the gas-dynamic unsteady process of filling the vessel with a component of the gas mixture for various values of the mass flow rate had been built. All the simulations were carried out using the ANSYS CFX software package. The influence of considering a heat exchange with the vessel walls on the studied parameters of the mixture is determined, namely: pressure, gas temperature averaged over the volume, gas temperature in a control point, mass of the component of a gas mixture. It was found that the deviation of the calculated data when using a model with an adiabatic condition on the wall compared to a model with a constant temperature regime is: for pressure – no more than 5 %, for averaged temperature – 6 %, for the temperature at the monitor point – 9 %, for mass – 1.5 %. The discrepancy between the simulation results and the full-scale experiment does not exceed 12 % in pressure and temperature at the monitor point, as well as 4 % in the mass of the component. By the experimentally determined accuracy parameter of the gas mixture (the mass of the mixture component in particular), the numerical models had been corrected to provide the mass value error of no more than 0.5 %.

Fire Safety ◽  
2020 ◽  
Vol 36 ◽  
pp. 121-130
Author(s):  
T. Shnal ◽  
S. Pozdieiev ◽  
R. Yakovchuk ◽  
O. Nekora ◽  
S. Sidnei

The aim of the work was mathematical modeling of fire development in a three-storey residential building during full-scale fire tests; research of accuracy and reliability of parameters of temperature modes of fire in separate rooms of the building. To achieve this goal, it is advisable to use computational gas-hydrodynamics, which allow to determine the limits of application of this approach to predict the behavior of building structures in a fire. The Pyrosim computer system, which serves as a user shell for the Fire Dynamics Simulator program, was used to calculate the temperature in fire room models. This FDS system uses numerical algorithms to solve the complete system of Navier-Stokes differential equations to determine temperature and other hazards in a fire. To visualize the results of calculations, the software module of the PyroSim Smokeview system was used, which allows to build appropriate graphical representations of temperature distributions.A numerical experiment was performed to model full-scale tests of rooms with fire in a three-story building using computer gas-hydrodynamics methods. The nature of the fire and the time dependences of its main parameters were revealed, which in turn allowed to analyze the adequacy of the simulation results and investigate their adequacy and accuracy.The obtained results of research on the accuracy of modeling of full-scale tests of rooms with fire in a three-story building showed that the error determined when comparing experimental and calculated data was not significant. The relative error did not exceed 28%, and the standard deviation did not exceed 51 ° C. The values of the statistical criteria of Cochren, Student and Fisher for the simulation results due to the difference between the calculated and experimental data have values of no more than 0.98, 0.84 and 1.008, respectively, and do not exceed the tabular values. This means that the simulation results are adequate, which allows you to use this approach to predict the behavior of building structures in a fire that is close to real.


2021 ◽  
Vol 152 (A2) ◽  
Author(s):  
Amit Ray ◽  
Debabrata Sen ◽  
SN Singh ◽  
V Seshadri

The prediction of manoeuvring characteristics of underwater vehicles during design involves approximations at various stages. This paper attempts to quantify some of the uncertainties involved in the manoeuvring characteristics of underwater vehicles. The first source of uncertainty is in idealization of mathematical model selected for trajectory simulation. This is illustrated for alternative mathematical models in trajectory simulation programs. Next, the values of the hydrodynamic coefficients (HDCs) in the equations of motion have their own levels of uncertainty, depending upon the methods used to determine them. The sensitivity of trajectory simulation results to uncertainty levels in various HDCs is examined. Finally, the level of uncertainty in full-scale measurements of manoeuvres of underwater vehicles is discussed and estimated. It emerges that the cumulative errors in the prediction process during design need to be reduced further, in order to maintain their levels of uncertainty below those of the validation process.


Author(s):  
M.G. Yagodin ◽  
E.I. Starovoytenko

The equipment for the production of wide range of metal powders purposed for powder metallurgy is described. The possibility for producing of powders by the plasma centrifugal spraying is considered taking into account the gas dynamic pressure. The calculated data on the powder size for different materials are given.


2014 ◽  
Vol 70 (7) ◽  
pp. 1285-1291 ◽  
Author(s):  
Jia-jia Deng ◽  
Liang-ming Pan ◽  
De-qi Chen ◽  
Yu-quan Dong ◽  
Cheng-mu Wang ◽  
...  

Aimed at cost saving and pollution reduction, a novel desulfurization wastewater evaporation treatment system (DWETS) for handling wet flue gas desulfurization (WFGD) wastewater of a coal-fired power plant was studied. The system's advantages include simple process, and less investment and space. The feasibility of this system has been proven and the appropriate position and number of nozzles, the spray droplet size and flue gas temperature limitation have been obtained by computational fluid dynamics (CFD) simulation. The simulation results show that a longer duct, smaller diameter and higher flue gas temperature could help to increase the evaporation rate. The optimal DWETS design of Shangdu plant is 100 μm droplet sprayed by two nozzles located at the long duct when the flue gas temperature is 130 °C. Field tests were carried out based on the simulation results. The effects of running DWETS on the downstream devices have been studied. The results show that DWETS has a positive impact on ash removal efficiency and does not have any negative impact on the electrostatic precipitator (ESP), flue gas heat exchanger and WFGD. The pH values of the slurry of WFGD slightly increase when the DWETS is running. The simulation and field test of the DWETS show that it is a feasible future technology for desulfurization wastewater treatment.


2000 ◽  
Vol 663 ◽  
Author(s):  
J. Samper ◽  
R. Juncosa ◽  
V. Navarro ◽  
J. Delgado ◽  
L. Montenegro ◽  
...  

ABSTRACTFEBEX (Full-scale Engineered Barrier EXperiment) is a demonstration and research project dealing with the bentonite engineered barrier designed for sealing and containment of waste in a high level radioactive waste repository (HLWR). It includes two main experiments: an situ full-scale test performed at Grimsel (GTS) and a mock-up test operating since February 1997 at CIEMAT facilities in Madrid (Spain) [1,2,3]. One of the objectives of FEBEX is the development and testing of conceptual and numerical models for the thermal, hydrodynamic, and geochemical (THG) processes expected to take place in engineered clay barriers. A significant improvement in coupled THG modeling of the clay barrier has been achieved both in terms of a better understanding of THG processes and more sophisticated THG computer codes. The ability of these models to reproduce the observed THG patterns in a wide range of THG conditions enhances the confidence in their prediction capabilities. Numerical THG models of heating and hydration experiments performed on small-scale lab cells provide excellent results for temperatures, water inflow and final water content in the cells [3]. Calculated concentrations at the end of the experiments reproduce most of the patterns of measured data. In general, the fit of concentrations of dissolved species is better than that of exchanged cations. These models were later used to simulate the evolution of the large-scale experiments (in situ and mock-up). Some thermo-hydrodynamic hypotheses and bentonite parameters were slightly revised during TH calibration of the mock-up test. The results of the reference model reproduce simultaneously the observed water inflows and bentonite temperatures and relative humidities. Although the model is highly sensitive to one-at-a-time variations in model parameters, the possibility of parameter combinations leading to similar fits cannot be precluded. The TH model of the “in situ” test is based on the same bentonite TH parameters and assumptions as for the “mock-up” test. Granite parameters were slightly modified during the calibration process in order to reproduce the observed thermal and hydrodynamic evolution. The reference model captures properly relative humidities and temperatures in the bentonite [3]. It also reproduces the observed spatial distribution of water pressures and temperatures in the granite. Once calibrated the TH aspects of the model, predictions of the THG evolution of both tests were performed. Data from the dismantling of the in situ test, which is planned for the summer of 2001, will provide a unique opportunity to test and validate current THG models of the EBS.


2016 ◽  
Vol 09 (03) ◽  
pp. 1650045 ◽  
Author(s):  
Mianmian Zhang ◽  
Yongping Zhang

Lotka–Volterra population competition model plays an important role in mathematical models. In this paper, Julia set of the competition model is introduced by use of the ideas and methods of Julia set in fractal geometry. Then feedback control is taken on the Julia set of the model. And synchronization of two different Julia sets of the model with different parameters is discussed, which makes one Julia set change to be another. The simulation results show the efficacy of these methods.


Author(s):  
Hongtao Yu ◽  
Reza Langari

This paper presents a data-driven method to detect vehicle problems related to unintended acceleration (UA). A diagnostic system is formulated by analyzing several specific vehicle events such as acceleration peaks and generating corresponding mathematical models. The diagnostic algorithm was implemented in the Simulink/dSpace environment for validation. Major factors that affect vehicles’ acceleration (e.g., changes of road grades and gear shifting) were included in the simulation. UA errors were added randomly when human drivers drove virtual cars. The simulation results show that the algorithm succeeds in detecting abnormal acceleration.


1995 ◽  
Vol 38 (5-6) ◽  
Author(s):  
G. Croci ◽  
D. D'Ayala ◽  
R. Liburdi

The present work aimed to outline the need to investigate different fields of research to interpret the structural behaviour of a monument as complex as the Colosseum. It is shown how defining the numerical models first. then refining them, followed by interpretation of results. is strictly linked with the inforination gathered from historical records and observation of the ~nonumenta s it is today. The study is confined to the area of the Valadier abutment. analysing its state and its seismic behaviour before and after the XIX century restoration using different ilumerical tools, from the elastic modal analysis to the non linear step by step time history direct integration. The procedure comparati\ely evaluates the reliability in the interpretation of the results and identifies future lines or research.


2020 ◽  
Author(s):  
N. Nuraini ◽  
K. Khairudin ◽  
P. Hadisoemarto ◽  
H. Susanto ◽  
A. Hasan ◽  
...  

AbstractTo mitigate more casualties from the COVID-19 outbreak, this study assessed optimal vaccination scenarios, considering some existing healthcare conditions and some assumptions, by developing SIQRD (Susceptible-Infected-Quarantine-Recovery-Death) models for Jakarta, West Java, and Banten, in Indonesia. The models included an age-structured dynamic transmission model that naturally could give different treatments among age groups of population. The simulation results show that the timing and period’s length of the vaccination should be well planned and prioritizing particular age groups will give significant impact on the total number of casualties.


2014 ◽  
Vol 1040 ◽  
pp. 478-483
Author(s):  
M. Goreshnev ◽  
E. Litvishko

The article is devoted to the mathematical modeling of vacuum conductive timber drying. Analysis of known mathematical models allowed revealing their advantages and disadvantages. The modeling block diagram based on the drying periods is proposed. Lykov’s equations have been selected to solve heat and mass transfer problems. The comparison of experimental and calculated data has been conducted.


Sign in / Sign up

Export Citation Format

Share Document