scholarly journals Bird Species Detection From Voice Features

Author(s):  
Rachana B ◽  
Kavya Hegde ◽  
Navya Bhat

The objective is naturally recognize which types of bird is available in a sound data set utilizing regulated learning. Contriving successful calculations for bird species order is a fundamental advance toward separating valuable natural information from accounts gathered in the field. Here Naïve Bayes calculation to characterize bird voices into various species dependent on 265 highlights removed from the chipping sound of birds. The difficulties in this undertaking included memory the executives, the quantity of bird species for the machine perceive, and the jumble in signal-to-clamor proportion between the preparation and the testing sets. So to settle this difficulties we utilized Naïve Bayes calculation from this we got great precision in it. The calculation Naive Bayes got 91.58% exactness.

2018 ◽  
Vol 246 ◽  
pp. 03027
Author(s):  
Manfu Ma ◽  
Wei Deng ◽  
Hongtong Liu ◽  
Xinmiao Yun

Due to using the single classification algorithm can not meet the performance requirements of intrusion detection, combined with the numerical value of KNN and the advantage of naive Bayes in the structure of data, an intrusion detection model KNN-NB based on KNN and Naive Bayes hybrid classification algorithm is proposed. The model first preprocesses the NSL-KDD intrusion detection data set. And then by exploiting the advantages of KNN algorithm in data values, the model calculates the distance between the samples according to the feature items and selects the K sample data with the smallest distance. Finally, by naive Bayes to get the final result. The experimental results on the NSL-KDD dataset show that the KNN-NB algorithm can meet the requirement of balanced performance than the traditional KNN and Naive Bayes algorithm in term of accuracy, sensitivity, false detection rate, specificity, and missed detection rate.


2020 ◽  
Vol 19 ◽  
pp. 153303382090982
Author(s):  
Melek Akcay ◽  
Durmus Etiz ◽  
Ozer Celik ◽  
Alaattin Ozen

Background and Aim: Although the prognosis of nasopharyngeal cancer largely depends on a classification based on the tumor-lymph node metastasis staging system, patients at the same stage may have different clinical outcomes. This study aimed to evaluate the survival prognosis of nasopharyngeal cancer using machine learning. Settings and Design: Original, retrospective. Materials and Methods: A total of 72 patients with a diagnosis of nasopharyngeal cancer who received radiotherapy ± chemotherapy were included in the study. The contribution of patient, tumor, and treatment characteristics to the survival prognosis was evaluated by machine learning using the following techniques: logistic regression, artificial neural network, XGBoost, support-vector clustering, random forest, and Gaussian Naive Bayes. Results: In the analysis of the data set, correlation analysis, and binary logistic regression analyses were applied. Of the 18 independent variables, 10 were found to be effective in predicting nasopharyngeal cancer-related mortality: age, weight loss, initial neutrophil/lymphocyte ratio, initial lactate dehydrogenase, initial hemoglobin, radiotherapy duration, tumor diameter, number of concurrent chemotherapy cycles, and T and N stages. Gaussian Naive Bayes was determined as the best algorithm to evaluate the prognosis of machine learning techniques (accuracy rate: 88%, area under the curve score: 0.91, confidence interval: 0.68-1, sensitivity: 75%, specificity: 100%). Conclusion: Many factors affect prognosis in cancer, and machine learning algorithms can be used to determine which factors have a greater effect on survival prognosis, which then allows further research into these factors. In the current study, Gaussian Naive Bayes was identified as the best algorithm for the evaluation of prognosis of nasopharyngeal cancer.


2017 ◽  
Vol 5 (8) ◽  
pp. 260-266
Author(s):  
Subhankar Manna ◽  
Malathi G.

Healthcare industry collects huge amount of unclassified data every day.  For an effective diagnosis and decision making, we need to discover hidden data patterns. An instance of such dataset is associated with a group of metabolic diseases that vary greatly in their range of attributes. The objective of this paper is to classify the diabetic dataset using classification techniques like Naive Bayes, ID3 and k means classification. The secondary objective is to study the performance of various classification algorithms used in this work. We propose to implement the classification algorithm using R package. This work used the dataset that is imported from the UCI Machine Learning Repository, Diabetes 130-US hospitals for years 1999-2008 Data Set. Motivation/Background: Naïve Bayes is a probabilistic classifier based on Bayes theorem. It provides useful perception for understanding many algorithms. In this paper when Bayesian algorithm applied on diabetes dataset, it shows high accuracy. Is assumes variables are independent of each other. In this paper, we construct a decision tree from diabetes dataset in which it selects attributes at each other node of the tree like graph and model, each branch represents an outcome of the test, and each node hold a class attribute. This technique separates observation into branches to construct tree. In this technique tree is split in a recursive way called recursive partitioning. Decision tree is widely used in various areas because it is good enough for dataset distribution. For example, by using ID3 (Decision tree) algorithm we get a result like they are belong to diabetes or not. Method: We will use Naïve Bayes for probabilistic classification and ID3 for decision tree.  Results: The dataset is related to Diabetes dataset. There are 18 columns like – Races, Gender, Take_metformin, Take_repaglinide, Insulin, Body_mass_index, Self_reported_health etc. and 623 rows. Naive Bayes Classifier algorithm will be used for getting the probability of having diabetes or not. Here Diabetes is the class for Diabetes data set. There are two conditions “Yes” and “No” and have some personal information about the patient like - Races, Gender, Take_metformin, Take_repaglinide, Insulin, Body_mass_index, Self_reported_health etc. We will see the probability that for “Yes” what unit of probability and for “No” what unit of probability which is given bellow. For Example: Gender – Female have 0.4964 for “No” and 0.5581 for “Yes” and for Male 0.5035 is for “No” and 0.4418 for “Yes”. Conclusions: In this paper two algorithms had been implemented Naive Bayes Classifier algorithm and ID3 algorithm. From Naive Bayes Classifier algorithm, the probability of having diabetes has been predicted and from ID3 algorithm a decision tree has been generated.


Diabetes is a most common disease that occurs to most of the humans now a day. The predictions for this disease are proposed through machine learning techniques. Through this method the risk factors of this disease are identified and can be prevented from increasing. Early prediction in such disease can be controlled and save human’s life. For the early predictions of this disease we collect data set having 8 attributes diabetic of 200 patients. The patients’ sugar level in the body is tested by the features of patient’s glucose content in the body and according to the age. The main Machine learning algorithms are Support vector machine (SVM), naive bayes (NB), K nearest neighbor (KNN) and Decision Tree (DT). In the exiting the Naive Bayes the accuracy levels are 66% but in the Decision tree the accuracy levels are 70 to 71%. The accuracy levels of the patients are not proper in range. But in XG boost classifiers even after the Naïve Bayes 74 Percentage and in Decision tree the accuracy levels are 89 to 90%. In the proposed system the accuracy ranges are shown properly and this is only used mostly. A dataset of 729 patients can be stored in Mongo DB and in that 129 patients repots are taken for the prediction purpose and the remaining are used for training. The training datasets are used for the prediction purposes.


2020 ◽  
Vol 10 (2) ◽  
Author(s):  
Mahmood Umar ◽  
Nor Bahiah Ahmad ◽  
Anazida Zainal

This study investigates the performance of machine learning algorithms for sentiment analysis of students’ opinions on programming assessment. Previous researches show that Support Vector Machines (SVM) performs the best among all techniques, followed by Naïve Bayes (NB) in sentiment analysis. This study proposes a framework for classifying sentiments, as positive or negative using NB algorithm and Lexicon-based approach on small data set. The performance of NB algorithm was evaluated using SVM. NB and SVM conquer the Lexicon-based approach opinion lexicon technique in terms of accuracy in the specific area for which it is trained. The Lexicon-based technique, on the other hand, avoids difficult steps needed to train the classifier. Data was analyzed from 75 first year undergraduate students in School of Computing, Universiti Teknologi Malaysia taking programming subject. The student’s sentiments were gathered based on their opinions for the zero-score policy for unsuccessful compilation of program during skill-based test. The result of the study reveals that the students tend to have negative sentiments on programming assessment as it gives them scary emotions. The experimental result of applying NB algorithm yields a prediction accuracy of 85% which outperform both the SVM with 70% and Lexicon-based approach with 60% accuracy. The result shows that NB works better than SVM and Lexicon-based approach on small dataset. 


Machine learning is one of the fast growing aspect in current world. Machine learning (ML) and Artificial Neural Network (ANN) are helpful in detection and diagnosis of various heart diseases. Naïve Bayes Classification is a vital approach of classification in machine learning. The heart disease consists of set of range disorders affecting the heart. It includes blood vessel problems such as irregular heart beat issues, weak heart muscles, congenital heart defects, cardio vascular disease and coronary artery disease. Coronary heart disorder is a familiar type of heart disease. It reduces the blood flow to the heart leading to a heart attack. In this paper the UCI machine learning repository data set consisting of patients suffering from heart disease is analyzed using Naïve Bayes classification and support vector machines. The classification accuracy of the patients suffering from heart disease is predicted using Naïve Bayes classification and support vector machines. Implementation is done using R language.


Tech-E ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 44
Author(s):  
Rino Rino

Heart disease is a condition of the presence of fatty deposits in the coronary arteries in the heart which changes the role and shape of the arteries so that blood flow to the heart is obstructed. Data mining methods can predict this disease, some of the methods are C4.5 Algorithm and Naive Bayes which are often used in research.The data set in this research was obtained from the uci machine learning repository site, where the dataset has 3546 records and 13 attributes.The accuracy value of the Naïve Bayes algorithm has a high value of 81.40% compared to the C4.5 algorithm which only has an accuracy value of 79.07%. Based on the calculation results, it can be concluded that the Naïve Bayes Algorithm is a very good clarification because it has a value between 0.709 - 1.00.From conclusion above, the Naïve Bayes algorithm has a higher accuracy value than the C4.5 algorithm so the researchers decided to use the Naïve Bayes algorithm in predicting heart disease.


2020 ◽  
Vol 8 (6) ◽  
pp. 1623-1630

As huge amount of data accumulating currently, Challenges to draw out the required amount of data from available information is needed. Machine learning contributes to various fields. The fast-growing population caused the evolution of a wide range of diseases. This intern resulted in the need for the machine learning model that uses the patient's datasets. From different sources of datasets analysis, cancer is the most hazardous disease, it may cause the death of the forbearer. The outcome of the conducted surveys states cancer can be nearly cured in the initial stages and it may also cause the death of an affected person in later stages. One of the major types of cancer is lung cancer. It highly depends on the past data which requires detection in early stages. The recommended work is based on the machine learning algorithm for grouping the individual details into categories to predict whether they are going to expose to cancer in the early stage itself. Random forest algorithm is implemented, it results in more efficiency of 97% compare to KNN and Naive Bayes. Further, the KNN algorithm doesn't learn anything from training data but uses it for classification. Naive Bayes results in the inaccuracy of prediction. The proposed system is for predicting the chances of lung cancer by displaying three levels namely low, medium, and high. Thus, mortality rates can be reduced significantly.


Breast Cancer is the most often identified cancer among women and a major reason for the increased mortality rate among women. As the diagnosis of this disease manually takes long hours and the lesser availability of systems, there is a need to develop the automatic diagnosis system for early detection of cancer. The advanced engineering of natural image classification techniques and Artificial Intelligence methods has largely been used for the breast-image classification task. Data mining techniques contribute a lot to the development of such a system, Classification, and data mining methods are an effective way to classify data. For the classification of benign and malignant tumors, we have used classification techniques of machine learning in which the machine learns from the past data and can predict the category of new input. This study is a relative study on the implementation of models using Support Vector Machine (SVM), and Naïve Bayes on Breast cancer Wisconsin (Original) Data Set. With respect to the results of accuracy, precision, sensitivity, specificity, error rate, and f1 score, the efficiency of each algorithm is measured and compared. Our experiments have shown that SVM is the best for predictive analysis with an accuracy of 99.28% and naïve Bayes with an accuracy of 98.56%. It is inferred from this study that SVM is the well-suited algorithm for prediction.


Sign in / Sign up

Export Citation Format

Share Document