scholarly journals Manufacture and Characterization Physical and Mechanical Properties of Bioveneer Based Ark Clam Shells Composite

Author(s):  
Evi Mariani M ◽  
Kerista Tarigan ◽  
Timbangen Sembiring

Composite materials have been created for the applications of dental veneer from a mixture of raw materials : hydroxyapatite (HAp) powder from ark clam shells and epoxy resins by cold compression method with variations of composition hydroxyapatite (HAp) powder : epoxy resin (75 : 25)%wt, (80 : 20)%wt, (85 : 15)%wt, (90 : 10)%wt, dan (95 : 5)%wt. Sampling is created in three steps. The first step of ark clam shells powder is treated by smoothing it with a particle size of 200 mesh and heated at 900oC for 2 hours after it had been synthesized into hydroxyapatite (HAp) powder. The second step of the filler (hydroxyapatite powder) is mixed with dry mixing and then mixed with epoxy resin as a matrix. The third step of the homogeneous mixture is then inserted into the mold and compacted by heat to be more dense with pressure of 300 MPa or 3 ton held for 5 minutes at 27°C. The characterization results showed that the optimum composition of hydroxyapatite powder: epoxy resin (75 : 25)%wt with density value 0,1185 x 103 kg/m3, water absorption 1,163%, composed of -PO4 (phosphate), -CO3 (carbonate) and HOH groups. Mechanical properties with fracture strength 116 MPa, tensile strength 66,12 MPa, modulus of elasticity 3297,99 MPa and brinell hardness 75,87 HBR whose characterization results have met the conventional dental veneer standards.

Author(s):  
Georgel MIHU ◽  
Claudia Veronica UNGUREANU ◽  
Vasile BRIA ◽  
Marina BUNEA ◽  
Rodica CHIHAI PEȚU ◽  
...  

Epoxy resins have been presenting a lot of scientific and technical interests and organic modified epoxy resins have recently receiving a great deal of attention. For obtaining the composite materials with good mechanical proprieties, a large variety of organic modification agents were used. For this study gluten and gelatin had been used as modifying agents thinking that their dispersion inside the polymer could increase the polymer biocompatibility. Equal amounts of the proteins were milled together and the obtained compound was used to form 1 to 5% weight ratios organic agents modified epoxy materials. To highlight the effect of these proteins in epoxy matrix mechanical tests as three-point bending and compression were performed.


1972 ◽  
Vol 3 (3) ◽  
pp. 303-305
Author(s):  
Z. Yu. Sakalauskas ◽  
Ya. K. Matskevichene ◽  
Yu. I. Baltakite ◽  
I. I. Zdanavichyus

2019 ◽  
Vol 7 (2) ◽  
Author(s):  
Dendi Prayoga ◽  
. Dirhamsyah ◽  
. Nurhaida

This research aimed to examine the physical and mechanical properties of particle boards based on the composition of raw materials and adhesive content and know the treatment of the composition of raw materials and the best adhesive content and meet the standard JIS A 5908-2003. The research was conducted at Wood Workshop Laboratory, Wood Processing Laboratory Faculty of Forestry,Tanjungpura University and Laboratory of PT. Duta Pertiwi Nusantara Pontianak. The adhesive used is Urea Formaldehyde with 52% Solid Content. Comparison of the composition of rice husks and sengon varies namely rice husk 50%: sengon 50%, rice husk 60%: sengon 40% and rice husk 70%: sengon 30%  and variations in the levels of UF adhesives, namely 14% and 16%, with target density 0,7 gr/cm3. The particleboard was 30 cm x 30 cm x 1 cm Pressing at temperature 140oC for 8 minutes, with  pressure of 25 kg/cm2. The research results of the study of density and moisture content meet the standards JIS A 5908-2003. The best particle values of rice husk and sengon  with composition a ratio of  rice husk 50%: sengon 50% , 16% adhesive content  16%, with density value of  0,7072 gr/cm3, moisture content 9,1949 %, thick development 12,3210 %, water absorption 68,8270 %, MOE 12110,7273 kg/cm2, MOR 161,0025 kg/cm2, firmness sticky 1,9320 kg/cm2, screw holding strength 62,3124 kg.Keywords : adhesive, composition, particle board, rice husk, sengon


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Ridho Pratama ◽  
M Dirhamsyah ◽  
. Nurhaida

This study aims to examine the physical and mechanical properties of gypsum board from Acacia mangium Willd wood waste based on gypsum content and wood powder size. This study refers to the JIS A 5417-1992 standard. This research were conducted at Wood Work Shop laboratory for the preparation of raw materials, Wood Technology laboratory Faculty of Forestry for board making and testing the physical properties of gypsum boards, and  PT. Duta Pertiwi Nusantara laboratory to test the mechanical properties of the gypsum board. The material used is  A. mangium W. Wood powder, gypsum flour, water and borax. The study uses Factorial Completely Randomized Design (CRD) with two factors, namely factor A (gypsum content) which consists of gypsum content of 400%, 500% and 600% of the weight of A. mangium W. wood powder, and factors B (wood powder size) consists of 20 mesh passes 40 mesh retained and 40 mesh passes 60 mesh retained. The results showed that the density (600% gypsum content of 40 and 60 mesh retained wood powder size), moisture content, thickness swelling, MOE (600% gypsum content of 40 and 60 mesh retained wood powder size) fulfill JIS A5417-1992 standard. The best gypsum board is gypsum board with gypsum content of 600% with a wood powder size is 40 mesh.Keyword: Acacia mangium, gypsum board, gypsum content, wood powder size.


2020 ◽  
Vol 1 (3) ◽  
pp. 77-83

Phenol novolac epoxy resin is a polymer matter which its properties can be modified for industrial needs. In this research, nanocomposites of phenol novolac epoxy resin and unsaturated polyester are made nano Bentonite and silica nanoparticles as filler. For this purpose, effect of nanoparticles percent on nanocomposite formation is studied and their physical, mechanical and thermal properties are obtained. The presence of unsaturated polyester in this process forms a cross-link capable of improving the physical and mechanical properties of epoxy resin. Fracture behavior was determined by a SEM device. Moreover, TGA, DSC, impact tests and bending test were applied for data analysis. When process ability is growing, moisture absorption decreases. Fracture toughness was also evaluated in a stoichiometric network. Physical and mechanical properties improve significantly with increasing nanoparticles. The most important reason for using this nanocomposite is its high resistance to corrosion.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5720 ◽  
Author(s):  
Vicente Colomer-Romero ◽  
Dante Rogiest ◽  
Juan Antonio García-Manrique ◽  
Jose Enrique Crespo

Bio- and green composites are mainly used in non-structural automotive elements like interior panels and vehicle underpanels. Currently, the use of biocomposites as a worthy alternative to glass fibre-reinforced plastics (GFRPs) in structural applications still needs to be fully evaluated. In the current study, the development of a suited biocomposites started with a thorough review of the available raw materials, including both reinforcement fibres and matrix materials. Based on its specific properties, hemp appeared to be a very suitable fibre. A similar analysis was conducted for the commercially available biobased matrix materials. Greenpoxy 55 (with a biocontent of 55%) and Super Sap 100 (with a biocontent of 37%) were selected and compared with a standard epoxy resin. Tensile and three-point bending tests were conducted to characterise the hemp-based biocomposite.


Author(s):  
Hsin Her Yu ◽  
Min-Hsun Cheng ◽  
Rong-Yuan Jou ◽  
Kuang-Chyi Lee ◽  
Chien-Chang Lin

With increasing global urbanization and industrialization, many more pipelines for gas, potable water, sewer, oil, and power cables have been installed underground, underwater, in buildings and in factories. Maintenance of such pipelines is crucial. However, it is often difficult and has become a growing problem these days. The PALTEM-HL (Trade mark and stands for Pipeline Automatic Lining SysTEM, Hose Lining Method), a pipeline relining system, was developed as an effective and inexpensive solution for this problem. In this project, we try to develop a new resins and the adhesives system to replace the raw materials used in the PALTEM-HL system. Anionic harder combined two different types of epoxy resins were investigated in this study. After curing, the mechanical properties and glass transition temperature of the mixture were examined and the optimum sample preparation prescription was also found. FTIR (Fourier Transform Infrared Spectroscopy) and DSC (Differential Scanning Calorimeter) were employed to monitor the curing process of the mixtures. The mechanical properties of the mixture were also measured by Instron and micro Vickers.


2011 ◽  
Vol 236-238 ◽  
pp. 116-119
Author(s):  
Wen Ming Zhang ◽  
Yu Cang Zhang ◽  
De Feng Zhao

The liquefied corn barn-based epoxy resin (LCBER) was synthesised through the glycidyl etherification reaction from liquefied corn barn (LCB) had having groups of bound phenol and epichlorohydrine under alkali conditions. The average molecular weights of LCBER in various reaction conditions were examined. The extreme high molecular weight portion of LCBER-30 was obtained using LCB at 30 min as raw materials. The epoxy functionality of LCBER was controlled by the amount of bound phenol in LCB. LCBER was cured with polyamide-650 (PA-650) and the thermal and mechanical properties were evaluated. Comparing to the petroleum-based bisphenol-A type epoxy resin (DGEBA), LCBER presented higher adhesive shear strength and good thermal stability. These suggested that LCBER would be more suitable to glue biomass materials.


Sign in / Sign up

Export Citation Format

Share Document