scholarly journals Zebra Crossing Detection and Time Scheduling Accuracy, Enhancement Optimization Using Artificial Intelligence

Author(s):  
Pratik Kumar Sinha ◽  
Dr. Sujesh D. Ghodmare

Zebra crossing detection is a fundamental function of the electronic travel aid. It can locate the zebra crossing and estimate its direction to help the visually impaired to cross the road safely. In contrast to the conventional methods, a regression approach is adopted to detect zebra crossing based on convolutional neural networks. Specifically, a fixed‐size window slides across the image captured at the intersection. The image patches are sequentially fed to the logistic regression model to identify the zebra crossing. Then the image patch of zebra crossing is fed to the regression model to predict the direction. The parameters of models are optimized by the ANN back propagation algorithm before predictions. Compared with existing methods, the proposed method can improve the precision‐recall performance of the zebra crossing identification and reduce the root mean square error of predicted directions.

Author(s):  
Chun Cheng ◽  
Wei Zou ◽  
Weiping Wang ◽  
Michael Pecht

Deep neural networks (DNNs) have shown potential in intelligent fault diagnosis of rotating machinery. However, traditional DNNs such as the back-propagation neural network are highly sensitive to the initial weights and easily fall into the local optimum, which restricts the feature learning capability and diagnostic performance. To overcome the above problems, a deep sparse filtering network (DSFN) constructed by stacked sparse filtering is developed in this paper and applied to fault diagnosis. The developed DSFN is pre-trained by sparse filtering in an unsupervised way. The back-propagation algorithm is employed to optimize the DSFN after pre-training. Then, the DSFN-based intelligent fault diagnosis method is validated using two experiments. The results show that pre-training with sparse filtering and fine-tuning can help the DSFN search for the optimal network parameters, and the DSFN can learn discriminative features adaptively from rotating machinery datasets. Compared with classical methods, the developed diagnostic method can diagnose rotating machinery faults with higher accuracy using fewer training samples.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2704
Author(s):  
Yunhan Lin ◽  
Wenlong Ji ◽  
Haowei He ◽  
Yaojie Chen

In this paper, an intelligent water shooting robot system for situations of carrier shake and target movement is designed, which uses a 2 DOF (degree of freedom) robot as an actuator, a photoelectric camera to detect and track the desired target, and a gyroscope to keep the robot’s body stable when it is mounted on the motion carriers. Particularly, for the accurate shooting of the designed system, an online tuning model of the water jet landing point based on the back-propagation algorithm was proposed. The model has two stages. In the first stage, the polyfit function of Matlab is used to fit a model that satisfies the law of jet motion in ideal conditions without interference. In the second stage, the model uses the back-propagation algorithm to update the parameters online according to the visual feedback of the landing point position. The model established by this method can dynamically eliminate the interference of external factors and realize precise on-target shooting. The simulation results show that the model can dynamically adjust the parameters according to the state relationship between the landing point and the desired target, which keeps the predicted pitch angle error within 0.1°. In the test on the actual platform, when the landing point is 0.5 m away from the position of the desired target, the model only needs 0.3 s to adjust the water jet to hit the target. Compared to the state-of-the-art method, GA-BP (genetic algorithm-back-propagation), the proposed method’s predicted pitch angle error is within 0.1 degree with 1/4 model parameters, while costing 1/7 forward propagation time and 1/200 back-propagation calculation time.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Florian Stelzer ◽  
André Röhm ◽  
Raul Vicente ◽  
Ingo Fischer ◽  
Serhiy Yanchuk

AbstractDeep neural networks are among the most widely applied machine learning tools showing outstanding performance in a broad range of tasks. We present a method for folding a deep neural network of arbitrary size into a single neuron with multiple time-delayed feedback loops. This single-neuron deep neural network comprises only a single nonlinearity and appropriately adjusted modulations of the feedback signals. The network states emerge in time as a temporal unfolding of the neuron’s dynamics. By adjusting the feedback-modulation within the loops, we adapt the network’s connection weights. These connection weights are determined via a back-propagation algorithm, where both the delay-induced and local network connections must be taken into account. Our approach can fully represent standard Deep Neural Networks (DNN), encompasses sparse DNNs, and extends the DNN concept toward dynamical systems implementations. The new method, which we call Folded-in-time DNN (Fit-DNN), exhibits promising performance in a set of benchmark tasks.


2021 ◽  
pp. 1-12
Author(s):  
Matthew van Bommel ◽  
Luke Bornn ◽  
Peter Chow-White ◽  
Chuancong Gao

Box score statistics are the baseline measures of performance for National Collegiate Athletic Association (NCAA) basketball. Between the 2011-2012 and 2015-2016 seasons, NCAA teams performed better at home compared to on the road in nearly all box score statistics across both genders and all three divisions. Using box score data from over 100,000 games spanning the three divisions for both women and men, we examine the factors underlying this discrepancy. The prevalence of neutral location games in the NCAA provides an additional angle through which to examine the gaps in box score statistic performance, which we believe has been underutilized in existing literature. We also estimate a regression model to quantify the home court advantages for box score statistics after controlling for other factors such as number of possessions, and team strength. Additionally, we examine the biases of scorekeepers and referees. We present evidence that scorekeepers tend to have greater home team biases when observing men compared to women, higher divisions compared to lower divisions, and stronger teams compared to weaker teams. Finally, we present statistically significant results indicating referee decisions are impacted by attendance, with larger crowds resulting in greater bias in favor of the home team.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 626
Author(s):  
Svajone Bekesiene ◽  
Rasa Smaliukiene ◽  
Ramute Vaicaitiene

The present study aims to elucidate the main variables that increase the level of stress at the beginning of military conscription service using an artificial neural network (ANN)-based prediction model. Random sample data were obtained from one battalion of the Lithuanian Armed Forces, and a survey was conducted to generate data for the training and testing of the ANN models. Using nonlinearity in stress research, numerous ANN structures were constructed and verified to limit the optimal number of neurons, hidden layers, and transfer functions. The highest accuracy was obtained by the multilayer perceptron neural network (MLPNN) with a 6-2-2 partition. A standardized rescaling method was used for covariates. For the activation function, the hyperbolic tangent was used with 20 units in one hidden layer as well as the back-propagation algorithm. The best ANN model was determined as the model that showed the smallest cross-entropy error, the correct classification rate, and the area under the ROC curve. These findings show, with high precision, that cohesion in a team and adaptation to military routines are two critical elements that have the greatest impact on the stress level of conscripts.


1995 ◽  
Vol 3 (3) ◽  
pp. 133-142 ◽  
Author(s):  
M. Hana ◽  
W.F. McClure ◽  
T.B. Whitaker ◽  
M. White ◽  
D.R. Bahler

Two artificial neural network models were used to estimate the nicotine in tobacco: (i) a back-propagation network and (ii) a linear network. The back-propagation network consisted of an input layer, an output layer and one hidden layer. The linear network consisted of an input layer and an output layer. Both networks used the generalised delta rule for learning. Performances of both networks were compared to the multiple linear regression method MLR of calibration. The nicotine content in tobacco samples was estimated for two different data sets. Data set A contained 110 near infrared (NIR) spectra each consisting of reflected energy at eight wavelengths. Data set B consisted of 200 NIR spectra with each spectrum having 840 spectral data points. The Fast Fourier transformation was applied to data set B in order to compress each spectrum into 13 Fourier coefficients. For data set A, the linear regression model gave better results followed by the back-propagation network which was followed by the linear network. The true performance of the linear regression model was better than the back-propagation and the linear networks by 14.0% and 18.1%, respectively. For data set B, the back-propagation network gave the best result followed by MLR and the linear network. Both the linear network and MLR models gave almost the same results. The true performance of the back-propagation network model was better than the MLR and linear network by 35.14%.


2008 ◽  
Vol 17 (06) ◽  
pp. 1089-1108 ◽  
Author(s):  
NAMEER N. EL. EMAM ◽  
RASHEED ABDUL SHAHEED

A method based on neural network with Back-Propagation Algorithm (BPA) and Adaptive Smoothing Errors (ASE), and a Genetic Algorithm (GA) employing a new concept named Adaptive Relaxation (GAAR) is presented in this paper to construct learning system that can find an Adaptive Mesh points (AM) in fluid problems. AM based on reallocation scheme is implemented on different types of two steps channels by using a three layer neural network with GA. Results of numerical experiments using Finite Element Method (FEM) are discussed. Such discussion is intended to validate the process and to demonstrate the performance of the proposed learning system on three types of two steps channels. It appears that training is fast enough and accurate due to the optimal values of weights by using a few numbers of patterns. Results confirm that the presented neural network with the proposed GA consistently finds better solutions than the conventional neural network.


Author(s):  
Lizhi Gu ◽  
Tianqing Zheng

Precision improvement in sheet metal stamping has been the concern that the stamping researchers have engaged in. In order to improve the forming precision of sheet metal in stamping, this paper devoted to establish the generalized holo-factors mathematical model of dimension-error and shape-error for sheet metal in stamping based on BP neural network. Factors influencing the forming precision of stamping sheet metal were divided, altogether ten factors, and the generalized holo-factors mathematical model of dimension-error and shape-error for sheet metal in stamping was established using the back-propagation algorithm of error based on BP neural network. The undetermined coefficients of the model previously established were soluble according to the simulation data of sheet punching combined with the specific shape based on the BP neural network. With this mathematical model, the forecast data compared with the validate data could be obtained, so as to verify the fine practicability that the previously established mathematical model had, and then, it was shown that the generalized holo-factors mathematical model of size error and shape-error had fine practicality and versatility. Based on the generalized holo-factors mathematical model of error exemplified by the cylindrical parts, a group of process parameters could be selected, in which forming thickness was between 0.713 mm and 1.335 mm, major strain was between 0.085 and 0.519, and minor strain was between −0.596 and 0.319 from the generalized holo-factors mathematical model prediction, at the same time, the forming thickness, the major strain, and the minor strain were in good condition.


2013 ◽  
Vol 389 ◽  
pp. 623-631 ◽  
Author(s):  
Xiu Yan Wang ◽  
Ying Wang ◽  
Zong Shuai Li

For the flight control problem occurred in 3-DOF Helicopter System, reference adaptive inverse control scheme based on Fuzzy Neural Network model is designed. Firstly, fuzzy inference process of identifier and controller is achieved by using the network structure. Meanwhile, the neural network connection weights are used to express parameters of fuzzy inference. Then, back-propagation algorithm is adopted to amend the network connection weights in order to automatically identify the fuzzy model and adjust its membership functions and parameters, so that the actual system output of adaptive inverse controller control which is adjusted can track the reference model output. Finally, the simulation result of 3-DOF Helicopter System based on the scheme shows that the method is effective and feasible.


Sign in / Sign up

Export Citation Format

Share Document