scholarly journals Analisis Numerik Pengaruh Infiltrasi Hujan Terhadap Stabilitas Lereng Di Pangkalan, Sumatera Barat

2020 ◽  
Vol 11 (1) ◽  
pp. 25-36
Author(s):  
Rokhmat Hidayat

The landslides event was triggered by rain infiltration is an annual occurrence in Indonesia, majority of landslide occur in rainy season. In this research, the case of landslide taken in Pangkalan Area, District of Limapuluh Kota, West Sumatera. The location of the case study is the main access of West Sumatra-Riau, so the landslide in the location is certainly causing close the road. Research phase is geology mapping, geotechnical analysis, and hydrological modeling. Hydrological modeling is done by numerical simulation using laboratory data. The modeling results show that the rain infiltration process resulted in the formation of positive water pressure zone at the foot of the slope, then spread towards the top of the slope.  One day after the rainfall, the soil layer had been saturated. The soil layer will saturate the water, so that the slope stability will decrease and the landslide event will occur. To improve the slope stability, it can be done by preventing water from entering the permeable layer with the installation of the shotcrete layer, and draining the water from the slopes by the installation of horizontal drain.

2013 ◽  
Vol 4 (2) ◽  
pp. 24-27
Author(s):  
Suhaimi D.N.A.A ◽  
Selaman O. S.

Landslides not only include loss of human lives and properties, but also effect the transportation direct and indirectly. This study focus on the correlation between rainfalls and pore water pressure which lead to landslide event. For this study, the scope of study focuses at Bau, Sarawak whereby lot of landslide event occurs along the road in 2009. Triaxial test is conduct in lab to measure pore water pressure which modeling landslide occurs on 11th January 2009 at KM 72.00 Bau-Lundu Road. From the laboratory test, it can be seen that continuous and heavy rainfall will increase the pore water pressure in soil. When the pore water pressure increase from 809.94 kPa to 829.25 kPa, the strength of the soil will be decrease due to the water content inside the soil. Other than that, correlation between pore water pressure and rainfall can be seen as an exponential relationship by plotting agraph using Microsoft Excel. It indicates that continuous rainfall within 11 days will increase the changes in pore water pressure and causes the soil to be in fully saturation condition. After 27 hours, the soil will be in failure which leads to landslide.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 73
Author(s):  
Panagiotis Sitarenios ◽  
Francesca Casini

This paper presents a three-dimensional slope stability limit equilibrium solution for translational planar failure modes. The proposed solution uses Bishop’s average skeleton stress combined with the Mohr–Coulomb failure criterion to describe soil strength evolution under unsaturated conditions while its formulation ensures a natural and smooth transition from the unsaturated to the saturated regime and vice versa. The proposed analytical solution is evaluated by comparing its predictions with the results of the Ruedlingen slope failure experiment. The comparison suggests that, despite its relative simplicity, the analytical solution can capture the experimentally observed behaviour well and highlights the importance of considering lateral resistance together with a realistic interplay between mechanical parameters (cohesion) and hydraulic (pore water pressure) conditions.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 564
Author(s):  
Vladimir Čebašek ◽  
Veljko Rupar ◽  
Stevan Đenadić ◽  
Filip Miletić

The bucket-wheel dredge “Kovin I” for underwater coal mining with bucket-wheel type UCW-450 has been in operation for over 20 years. Based on analyzing the bucket-wheel dredger performance, productivity, maintenance costs, and reliability, a rational decision was made: to rehabilitate the most essential parts of the dredge, including the bucket wheel and the gearbox. However, the selection and construction of the excavator parts were performed on the ground of available laboratory data for digging resistance. The data itself was determined by the testing methodology that did not include the influence of surrounding water pressure at a certain depth of mining. According to the previous findings, it was necessary to develop a specific research and testing program that would involve appropriate laboratory testing of the geomechanical parameters. These were to represent the influence of hydrostatic water pressure on the working environment—coal. Nevertheless, geomechanical laboratory research tests were initially modified to provide reliable data of cutting resistance, especially in the water under different hydrostatic pressures, fully simulating the “in situ” working conditions of mining, i.e., cutting.


2013 ◽  
Vol 438-439 ◽  
pp. 1171-1175
Author(s):  
Zhi Li Sui ◽  
Zhao Guang Li ◽  
Xu Peng Wang ◽  
Wen Li Li ◽  
Tie Jun Xu

Dynamic consolidation method has been widely used in improving soft land, but always inefficient to saturated soft clay land, which is hard to improve, and even leads to rubber soil. Dynamic and drain consolidation method will deal with it well, with drainage system, pore-water can be expelled instantly from saturated soft clay as impacting. The pore-water pressure and earth pressure test in construction, the standard penetration test, plate loading test, geotechnical test after construction, which are all effective methods for effect testing. There is a comprehensive detection through different depth of soil layer with different detecting means on construction site. The results show that improving saturated soft clay land with dynamic and drain consolidation method has obtained good effect, and the fruit can be guidance for such construction in the future.


2012 ◽  
Vol 193-194 ◽  
pp. 1152-1155
Author(s):  
Yu Qing Yuan ◽  
Xue Chan Li ◽  
Sen Wen ◽  
Wen Bo Huo

In order to solve subgrade problems during the road construction in the shallow ground water area, light well point drainage technology is used, combined with the zhengbian logistics road. This paper expounds application principle of the light well point drainage, calculation and construction methods. When using light well point drainage, the appropriate permeability coefficient is 4 m/d relatively. If using water rushed law construction, water pressure should be controlled in 0.3-0.7 MPa. After well point equipment operates for 3-5 days, the foundation will form the precipitation funnel; then, soil can be excavated after drainaging 7-8d. It is shown that the light well point drainaging can reduce underground water lefficiently.


2017 ◽  
Vol 18 (7) ◽  
pp. 2029-2042
Author(s):  
Tony E. Wong ◽  
William Kleiber ◽  
David C. Noone

Abstract Land surface models are notorious for containing many parameters that control the exchange of heat and moisture between land and atmosphere. Properly modeling the partitioning of total evapotranspiration (ET) between transpiration and evaporation is critical for accurate hydrological modeling, but depends heavily on the treatment of turbulence within and above canopies. Previous work has constrained estimates of evapotranspiration and its partitioning using statistical approaches that calibrate land surface model parameters by assimilating in situ measurements. These studies, however, are silent on the impacts of the accounting of uncertainty within the statistical calibration framework. The present study calibrates the aerodynamic, leaf boundary layer, and stomatal resistance parameters, which partially control canopy turbulent exchange and thus the evapotranspiration flux partitioning. Using an adaptive Metropolis–Hastings algorithm to construct a Markov chain of draws from the joint posterior distribution of these resistance parameters, an ensemble of model realizations is generated, in which latent and sensible heat fluxes and top soil layer temperature are optimized. A set of five calibration experiments demonstrate that model performance is sensitive to the accounting of various sources of uncertainty in the field observations and model output and that it is critical to account for model structural uncertainty. After calibration, the modeled fluxes and top soil layer temperature are largely free from bias, and this calibration approach successfully informs and characterizes uncertainty in these parameters, which is essential for model improvement and development. The key points of this paper are 1) a Markov chain Monte Carlo calibration approach successfully improves modeled turbulent fluxes; 2) ET partitioning estimates hinge on the representation of uncertainties in the model and data; and 3) despite these inherent uncertainties, constrained posterior estimates of ET partitioning emerge.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Ling Zeng ◽  
Jie Liu ◽  
Jun-hui Zhang ◽  
Han-bing Bian ◽  
Wei-hua Lu

The SEEP/W module of finite element software GEO-slope is used to analyze the effects of fracture depth, permeability coefficient ratio, fracture angle, and fracture number on the rainwater infiltration process. Moreover, the effect of fracture seepage anisotropy on slope stability is discussed combining with unsaturated seepage theory. The results show that the pore water pressure in the fracture increases rapidly with the rainfall until it changes from negative pressure to positive pressure. The greater the fracture depth is, the greater the pore water pressure in the fracture is, and the greater the infiltration depth at the time of rainfall stopping is. When the permeability coefficient is greater than the rainfall intensity, the permeability coefficient ratio has a great influence on the infiltration process of rainwater. The smaller the fracture angle is, the greater the maximum pore water pressure is in the fracture depth range, and the greater the depth of the positive pore water pressure is. However, with the increase of fracture angle, the infiltration depth decreases, and the range of the surface saturation area of slope increases obviously. With the increase of fracture density, the saturated positive pressure region is connected to each other in the slope. The influence range and the degree of the rainwater on the seepage field are larger and larger. There is a power relation between the saturation area and the fracture number, and also the concentration distribution of long fractures directly forms the large-connected saturated zone and raises groundwater. The range of the saturated zone and variation law of the pore water pressure under fracture seepage are obtained, which provide a reference for the parameter partition assignment of slope stability analysis under fracture seepage.


2013 ◽  
Vol 17 (3) ◽  
pp. 947-959 ◽  
Author(s):  
D. M. Krzeminska ◽  
T. A. Bogaard ◽  
J.-P. Malet ◽  
L. P. H. van Beek

Abstract. The importance of hydrological processes for landslide activity is generally accepted. However, the relationship between precipitation, hydrological responses and movement is not straightforward. Groundwater recharge is mostly controlled by the hydrological material properties and the structure (e.g., layering, preferential flow paths such as fissures) of the unsaturated zone. In slow-moving landslides, differential displacements caused by the bedrock structure complicate the hydrological regime due to continuous opening and closing of the fissures, creating temporary preferential flow paths systems for infiltration and groundwater drainage. The consecutive opening and closing of fissure aperture control the formation of a critical pore water pressure by creating dynamic preferential flow paths for infiltration and groundwater drainage. This interaction may explain the seasonal nature of the slow-moving landslide activity, including the often observed shifts and delays in hydrological responses when compared to timing, intensity and duration of precipitation. The main objective of this study is to model the influence of fissures on the hydrological dynamics of slow-moving landslide and the dynamic feedbacks between fissures, hydrology and slope stability. For this we adapt the spatially distributed hydrological and slope stability model (STARWARS) to account for geotechnical and hydrological feedbacks, linking between hydrological response of the landside and the dynamics of the fissure network and applied the model to the hydrologically controlled Super-Sauze landslide (South French Alps).


2015 ◽  
Vol 72 (3) ◽  
Author(s):  
Muhammad Mukhlisin ◽  
Siti Jahara Matlan ◽  
Mohamad Jaykhan Ahlan ◽  
Mohd Raihan Taha

Malaysia is a country that is located near the equator line with tropical climates which receives high abundant rainfall, averaging 2,400mm annually. This makes Malaysia prone to the landslide events as rainfall is one of the main triggering factors that can cause landslide. Landslides in Malaysia are mainly attributed to frequent and prolonged rainfalls, in many cases associated with monsoon rainfalls. Of these, Ulu Klang area has received the most exposure. The area has constantly hit by fatal landslides since December 1993. This paper is aimed to investigate the correlation between the effective working rainfall and soil water index (SWI) methods with the landslide events in Ulu Klang, Malaysia. In this study 15 landslide events that occurred in Ulu Klang areas between years 1993 to 2012 were investigated and analyzed using rainfall threshold based on effective working rainfall and soil water index (SWI) methods. The analysis results showed that these methods are significant tools that can be used to identify the rainfall critical threshold of landslide event.  


Author(s):  
Chao-Lung Yeh ◽  
Wei-Cheng Lo ◽  
Cheng-Wei Lin ◽  
Chung-Feng Ding

Abstract. There are many factors causing land subsidence, and groundwater extraction is one of the most important causes of subsidence. A set of coupled partial differential equations are derived in this study by using the poro-elasticity theory and linear stress-strain constitutive relation to describe the one-dimensional consolidation in a saturated porous medium subjected to pore water pressure change due to groundwater table depression. Simultaneously, the closed-form analytical solutions for excess pore water pressure and total settlement are obtained. To illustrate the consolidation behavior of the poroelastic medium, the saturated layer of clay sandwiched between two sand layers is simulated, and the dimensionless pore water pressure changes with depths and the dimensionless total settlement as function of time in the clay layer are examined. The results show that the greater the water level change in the upper and lower sand layers, the greater the pore water pressure change and the total settlement of the clay layer, and the more time it takes to reach the steady state. If the amount of groundwater replenishment is increased, the soil layer will rebound.


Sign in / Sign up

Export Citation Format

Share Document