scholarly journals SIMULATION MODELING OF DESTRUCTION OF TYPICAL FASTENING ELEMENTS FOR DETONATION

2020 ◽  
Vol 11 (87) ◽  
Author(s):  
Marina Chernobryvko ◽  
◽  
Svitlana Svetlichna ◽  

A number of precautions are used to prevent injuries to people and industrial equipment during accidents at chemical plants. One of them is based on the use of protective containers for the storage of explosives. A typical container consists of a main structure and a lid of the loading hole. This cover is fixed to the container with fasteners based on bolted connections. To ensure the normative strength of such a connection at the design stage, an analysis of its dynamic strength is performed and the critical loads that cause the destruction of the structure are determined. To reduce the cost of design work, it is advisable to replace a number of experimental tests with numerical studies and simulate the process of destruction. Therefore, the development of methods for numerical analysis of dynamic strength and integrity of typical fasteners based on bolted joints is an urgent problem. Simulation of the destruction of composite structures based on bolted joints should adequately reflect the complex of mechanical loads. First, it is a static load due to the assembly of the bolted connection. Secondly, it is high-speed dynamic loads due to the action of a detonation shock wave. For mathematical modeling of such processes, it is necessary to take into account the influence of the load speed on the mechanical properties of metals in the bolted joint. An important role in modeling the destruction process is played by the correct choice of the criterion of destruction of the structural material. According to the analysis of previous studies, the criterion of maximum plastic deformation was chosen. For the numerical implementation of the developed mathematical model of high-speed deformation and destruction of the folded fastening structure on the basis of bolted connection taking into account nonlinear properties of mechanical characteristics of materials and influence of previous loadings during assembly of a design the finite element method is chosen. The application of the proposed technique at the design stage of protective containers allows to reduce the number of experimental tests and thus reduce the development time and to reduce its cost.

Author(s):  
Yingfeng Ji ◽  
Ryoichi S. Amano ◽  
Ronald A. Perez

It is always one of the most challenging problems to control an underwater robotics due to the complex external forces in an underwater environment. It is difficult to obtain an ideal control performance using linear control technologies due to highly nonlinear properties of system. A valid method of linearization for nonlinear system is provided in this study. Based on this linearized system, the linear control theories were therefore employed for the tracking control of underwater robotics. The panning and tilting motions of this underwater robotics can basically track two given sinusoidal references based on the simulation results. In order to achieve a high-speed manipulation of this underwater robotics, fluid forces have to be considered and modeled. A computational fluid dynamics (CFD) technology is adopted in order to obtain more precise hydrodynamic models for simulation at the design stage. Two torque models that represent the degree of freedoms (DOFs) of panning and tilting respectively have been developed using the CFD software. The dynamic model of this robotics used in this paper is the one by Ji, et al [1].


Author(s):  
Francisco Lamas ◽  
Miguel A. M. Ramirez ◽  
Antonio Carlos Fernandes

Flow Induced Motions are always an important subject during both design and operational phases of an offshore platform life. These motions could significantly affect the performance of the platform, including its mooring and oil production systems. These kind of analyses are performed using basically two different approaches: experimental tests with reduced models and, more recently, with Computational Fluid Dynamics (CFD) dynamic analysis. The main objective of this work is to present a new approach, based on an analytical methodology using static CFD analyses to estimate the response on yaw motions of a Tension Leg Wellhead Platform on one of the several types of motions that can be classified as flow-induced motions, known as galloping. The first step is to review the equations that govern the yaw motions of an ocean platform when subjected to currents from different angles of attack. The yaw moment coefficients will be obtained using CFD steady-state analysis, on which the yaw moments will be calculated for several angles of attack, placed around the central angle where the analysis is being carried out. Having the force coefficients plotted against the angle values, we can adjust a polynomial curve around each analysis point in order to evaluate the amplitude of the yaw motion using a limit cycle approach. Other properties of the system which are flow-dependent, such as damping and added mass, will also be estimated using CFD. The last part of this work consists in comparing the analytical results with experimental results obtained at the LOC/COPPE-UFRJ laboratory facilities.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4144
Author(s):  
Yatai Ji ◽  
Paolo Giangrande ◽  
Vincenzo Madonna ◽  
Weiduo Zhao ◽  
Michael Galea

Transportation electrification has kept pushing low-voltage inverter-fed electrical machines to reach a higher power density while guaranteeing appropriate reliability levels. Methods commonly adopted to boost power density (i.e., higher current density, faster switching frequency for high speed, and higher DC link voltage) will unavoidably increase the stress to the insulation system which leads to a decrease in reliability. Thus, a trade-off is required between power density and reliability during the machine design. Currently, it is a challenging task to evaluate reliability during the design stage and the over-engineering approach is applied. To solve this problem, physics of failure (POF) is introduced and its feasibility for electrical machine (EM) design is discussed through reviewing past work on insulation investigation. Then the special focus is given to partial discharge (PD) whose occurrence means the end-of-life of low-voltage EMs. The PD-free design methodology based on understanding the physics of PD is presented to substitute the over-engineering approach. Finally, a comprehensive reliability-oriented design (ROD) approach adopting POF and PD-free design strategy is given as a potential solution for reliable and high-performance inverter-fed low-voltage EM design.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 137
Author(s):  
Artur Andrearczyk ◽  
Bartlomiej Konieczny ◽  
Jerzy Sokołowski

This paper describes a novel method for the experimental validation of numerically optimised turbomachinery components. In the field of additive manufacturing, numerical models still need to be improved, especially with the experimental data. The paper presents the operational characteristics of a compressor wheel, measured during experimental research. The validation process included conducting a computational flow analysis and experimental tests of two compressor wheels: The aluminium wheel and the 3D printed wheel (made of a polymer material). The chosen manufacturing technology and the results obtained made it possible to determine the speed range in which the operation of the tested machine is stable. In addition, dynamic destructive tests were performed on the polymer disc and their results were compared with the results of the strength analysis. The tests were carried out at high rotational speeds (up to 120,000 rpm). The results of the research described above have proven the utility of this technology in the research and development of high-speed turbomachines operating at speeds up to 90,000 rpm. The research results obtained show that the technology used is suitable for multi-variant optimization of the tested machine part. This work has also contributed to the further development of numerical models.


2014 ◽  
Vol 670-671 ◽  
pp. 1041-1044 ◽  
Author(s):  
Xi Wang Wang ◽  
Xiao Yang Li ◽  
Lin Lin Zhang ◽  
Xiao Guang Wang

Joint member stiffness in a bolted connection directly influence the safety of a design in regard to both static and fatigue loading as well as in the prevention of separation in the connection. Thus, the accurate determination of the stiffness is of extreme importance to predict the behavior of bolted assemblies. In this paper, An analytical 3D axisymmetric model of bolted joints is proposed to obtain the joint stiffness of Bolted Joints. Considering many different analytical models have been proposed to calculate the joint stiffness, the expression based force equilibrium can be a easy way to choose the best expression for the joint stiffness as a judgment criteria.


2021 ◽  
Vol 1 (1) ◽  
pp. 40-49
Author(s):  
S. Rachev ◽  
K. Dimitrova ◽  
D. Koeva ◽  
L. Dimitrov

During the operation of electric induction motors used to drive passenger elevators, electro-mechanical transient processes occur, which can cause unacceptable dynamic loads and vibrations. In this regard, research is needed both at the design stage and for operating elevator systems to determine the arising impact currents and torques, in order to propose solutions for their limitation within pre-set limits. Paper deals with starting processes in a two-speed induction motor drive of a passenger elevator. The equations for the voltages of the induction motor are presented in relative units in a coordinate system rotating at a synchronous speed. The values have been obtained for the torques, the rotational frequencies and the currents when starting at a high speed and passing from high to low speed.


2021 ◽  
Vol 18 (3) ◽  
pp. 428-435
Author(s):  
Vladimir I. SMIRNOV ◽  
◽  
Tatiana A. KNOPOVA ◽  
Sergey S. MAYER ◽  
◽  
...  

Objective: Solving the problem of determining the conditions for the onset and development of unstable fracture, which is extremely important for the development of methods for calculating the limiting states of structural elements, improving the dynamic testing schemes of materials and classifying steels according to their ability to resist fracture. Methods: Analytical methods for assessing the limiting state of structural elements are used. Results: A brief overview of the available test methods for structural steels for dynamic strength and crack resistance is given. The experience accumulated by domestic and foreign practices in testing steels for strength and crack resistance under high-speed loading is analyzed. The disadvantages of the existing methods for assessing the indicators of dynamic strength and resistance to brittle fracture are indicated. Practical importance: It is shown that along with the traditional methods for assessing strength based on safety factors, it is necessary to develop and apply new methods for assessing the limiting state of structural elements, including by the criteria of crack resistance


1971 ◽  
Vol 8 (03) ◽  
pp. 327-333
Author(s):  
R. H. Salzman

This paper presents a semi-graphical approach for finding the first critical speed of a stepped shaft with finite bearing stiffness. The method is particularly applicable to high-speed turbine rotors with journal bearings. Using Rayleigh's Method and the exact solution for whirling of a uniform shaft with variable support stiffness, estimates of the lowest critical speed are easily obtained which are useful in the design stage. First critical speeds determined by this method show good agreement with values computed by the Prohl Method for the normal range of bearing stiffness. A criterion is also established for determining if the criticals are "bearing critical speeds" or "bending critical speeds," which is of importance in design. Discusser E. G. Baker


Author(s):  
Francesco Braghin ◽  
Federico Cheli ◽  
Edoardo Sabbioni

Individual tire model parameters are traditionally derived from expensive component indoor laboratory tests as a result of an identification procedure minimizing the error with respect to force and slip measurements. These parameters are then transferred to vehicle models used at a design stage to simulate the vehicle handling behavior. A methodology aimed at identifying the Magic Formula-Tyre (MF-Tyre) model coefficients of each individual tire for pure cornering conditions based only on the measurements carried out on board vehicle (vehicle sideslip angle, yaw rate, lateral acceleration, speed and steer angle) during standard handling maneuvers (step-steers) is instead presented in this paper. The resulting tire model thus includes vertical load dependency and implicitly compensates for suspension geometry and compliance (i.e., scaling factors are included into the identified MF coefficients). The global number of tests (indoor and outdoor) needed for characterizing a tire for handling simulation purposes can thus be reduced. The proposed methodology is made in three subsequent steps. During the first phase, the average MF coefficients of the tires of an axle and the relaxation lengths are identified through an extended Kalman filter. Then the vertical loads and the slip angles at each tire are estimated. The results of these two steps are used as inputs to the last phase, where, the MF-Tyre model coefficients for each individual tire are identified through a constrained minimization approach. Results of the identification procedure have been compared with experimental data collected on a sport vehicle equipped with different tires for the front and the rear axles and instrumented with dynamometric hubs for tire contact forces measurement. Thus, a direct matching between the measured and the estimated contact forces could be performed, showing a successful tire model identification. As a further verification of the obtained results, the identified tire model has also been compared with laboratory tests on the same tire. A good agreement has been observed for the rear tire where suspension compliance is negligible, while front tire data are comparable only after including a suspension compliance compensation term into the identification procedure.


Sign in / Sign up

Export Citation Format

Share Document