scholarly journals Development of simulation model for evaluating operational performance of railroad networks

Author(s):  
Saad Syed

Railroads move freight traffic on their network based on an overall operations plan that includes blocking, train formation, and train scheduling plans. The optimization of these operations over the entire network is integral to maximizing efficiency and minimizing costs. This thesis develops a simulation model for analyzing various operation plans of a railroad network along with guidelines for establishing a comprehensive operations plan. The objective is to move all freight on the network with minimal cost. With the model simulation and comparison of several operation plans can be performed to determine the 'best case' plan. The model implements a discrete state, deterministic simulation approach. The user-friendly software for implementation of the model was programmed in VBA and Excel. Application of the model is demonstrated using a hypothetical railroad network. The results show that the model is an effective tool in evaluating various scenarios and helping in determining the best plan.

2012 ◽  
Vol 43 (1-2) ◽  
pp. 54-63 ◽  
Author(s):  
Baohong Lu ◽  
Huanghe Gu ◽  
Ziyin Xie ◽  
Jiufu Liu ◽  
Lejun Ma ◽  
...  

Stochastic simulation is widely applied for estimating the design flood of various hydrosystems. The design flood at a reservoir site should consider the impact of upstream reservoirs, along with any development of hydropower. This paper investigates and applies a stochastic simulation approach for determining the design flood of a complex cascade of reservoirs in the Longtan watershed, southern China. The magnitude of the design flood when the impact of the upstream reservoirs is considered is less than that without considering them. In particular, the stochastic simulation model takes into account both systematic and historical flood records. As the reliability of the frequency analysis increases with more representative samples, it is desirable to incorporate historical flood records, if available, into the stochastic simulation model. This study shows that the design values from the stochastic simulation method with historical flood records are higher than those without historical flood records. The paper demonstrates the advantages of adopting a stochastic flow simulation approach to address design-flood-related issues for a complex cascade reservoir system.


2019 ◽  
Vol 9 (1) ◽  
pp. 600-605 ◽  
Author(s):  
Gabriel Fedorko ◽  
Martin Vasil ◽  
Michaela Bartosova

AbstractIntra-plant transport systems within their operation directly impact on the performance of production systems. For their effective operation, it is, therefore, necessary to realize evaluation of operational performance and effectivity. For the realization of this type of evaluation, in addition to a wide range of sensors that can be difficult for installation and operation, we can also use indirect methods that are equally able to provide reliable operational characteristics. Indirect analytical methods are presented above all by the approach which is based on the use of simulation methods. The method of computer simulation provides a wide range of options for the evaluation of efficiency and performance. The paper describes the use of a simulation model created in the program Tecnomatix Plant Simulation for analyzing the supply of production workplaces within the MilkRun system.


2013 ◽  
Vol 309 ◽  
pp. 366-371 ◽  
Author(s):  
František Manlig ◽  
Radek Havlik ◽  
Alena Gottwaldova

This paper deals with research in computer simulation of manufacturing processes. The paper summarizes the procedures associated with developing the model, experimenting with and evaluating the model results. The key area is of experimentation with the simulation model and evaluation using indicators or multi-criteria functions. With regards to the experiment the crucial variables are the simulation model. The key ideas are to set the number of variables, depending on what a given simulation will be. For example, when introducing new technology into production, modify the type of warehouse, saving workers, thus economizing. The simulation models for the operational management uses simplified models, if possible, a minimum number of variables to obtain the result in shortest possible time. These models are more user friendly and the course will be conducted mostly in the background. An example of a criteria function is the number of parts produced or production time. Multi-criteria function has given us the opportunity to make better quality decisions. It is based on the composition of several parameters, including their weight to one end point. The type of evaluation functions, whether it is an indicator or criteria function is selected and based on customer requirements. In most cases it is recommended to use the multi-dimensional function. It gives us a more comprehensive view of the results from the model and facilitates decision-making. The result of this paper is a display of setting parameters for the experimentation on a sample model. Furthermore, the comparisons of results with a multi-criteria objective function and one-criterion indicator.


Author(s):  
John Wu ◽  
David Ben-Arieh ◽  
Zhenzhen Shi

This research proposes an agent-based simulation model combined with the strength of systemic dynamic mathematical model, providing a new modeling and simulation approach of the pathogenesis of AIR. AIR is the initial stage of a typical sepsis episode, often leading to severe sepsis or septic shocks. The process of AIR has been in the focal point affecting more than 750,000 patients annually in the United State alone. Based on the agent-based model presented herein, clinicians can predict the sepsis pathogenesis for patients using the prognostic indicators from the simulation results, planning the proper therapeutic interventions accordingly. Impressively, the modeling approach presented creates a friendly user-interface allowing physicians to visualize and capture the potential AIR progression patterns. Based on the computational studies, the simulated behavior of the agent–based model conforms to the mechanisms described by the system dynamics mathematical models established in previous research.


2019 ◽  
Vol 188 ◽  
pp. 106268 ◽  
Author(s):  
Jørgen Bremnes Nielsen ◽  
Endre Sandvik ◽  
Eilif Pedersen ◽  
Bjørn Egil Asbjørnslett ◽  
Kjetil Fagerholt

2007 ◽  
Vol 18-19 ◽  
pp. 71-77
Author(s):  
I. Sule

In determining the correct operation of relays of a protection scheme, proper representation of instrument transformers and their behavior in conditions where there can be saturation, is very critical. The main objective of this paper is to develop simulation model for assessing the operational performance of Current Transformer (CT). In order to test the validity of the developed model, three cases of CT operational conditions were considered, with data collected from Gombe, 330/132/33kV PHCN substation. The simulation results revealed various configuration performance responses that could affect relay protective schemes to different degrees. The CT responses revealed that the secondary current and voltage were distorted when the core flux linkages exceeded the set 9.2 pu saturation limit. It is concluded that the model developed for the CT of interest yield satisfactory results.


Author(s):  
Takatoshi Asada ◽  
Yosuke Hirata ◽  
Susumu Naito ◽  
Mikio Izumi ◽  
Yukio Yoshimura

In alpha radioactivity measurement using ionized air transportation (AMAT), conversion from ion currents to radioactivity accurate is required. An ion transport simulation provides ways of complementarily determining conversion factors. We have developed an ion transport simulation model. Simulation results were compared with experiments with air speeds, faster than 1 m/s, achieving good agreement. In a practical AMAT apparatus, the air-flow at the alpha source may be slower than 1 m/s, and ion loss is likely to be large. Reinforcement of the ion transport model to cover the lower air speed region is effective. Ions are generated by an alpha particle in a very thin column. Since the ion density at this temporal stage is high, the recombination loss, proportional to the square of ion density, is dominant within a few milli-seconds. The spatial and temporal scales of this columnar recombination are too small for CFD simulation. We solve an ion transport equation during the period of columnar recombination with diffusion and recombination terms and incorporated the relation between ion loss and turbulent parameters into CFD. Using this model, simulations have been done for various air speeds and targets. Those for simulation results agree with experiments, showing improvement of simulation accuracy.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6038
Author(s):  
Mariano Gallo ◽  
Marilisa Botte ◽  
Antonio Ruggiero ◽  
Luca D’Acierno

We propose a model for optimising driving speed profiles on metro lines to reduce traction energy consumption. The model optimises the cruising speed to be maintained on each section between two stations; the functions that link the cruising speed to the travel time on the section and the corresponding energy consumption are built using microscopic railway simulation software. In addition to formulating an optimisation model and its resolution through a gradient algorithm, the problem is also solved by using a simulation model and the corresponding optimisation module, with which stochastic factors may be included in the problem. The results are promising and show that traction energy savings of over 25% compared to non-optimised operations may be achieved.


2013 ◽  
Vol 5 (5) ◽  
pp. 578-582
Author(s):  
Viktoriia Ivannikova ◽  
Kateryna Kryshkevych

The simulation model for the line maintenance department should be used as a tool to support effective and efficient functioning of every airline. The paper describes application of this model at Ukraine International Airlines for their major maintenance station at Boryspil International Airport in Kyiv, Ukraine.


Sign in / Sign up

Export Citation Format

Share Document