scholarly journals Development of novel polystyrene composite beads for defect-free lost foam casting

Author(s):  
Satiendra (Uttam) Jagoo

The wider adoption of the Lost Foam Casting (LFC) process by the foundry industry has been impeded by the occurrence of fold defects. It is well known that a new foamed polymer, which degrades with less thermal energy (or less endothermic) and produces fewer gaseous pyrolysis products, may be a solution to fold defects. Hence, this pioneering research was an attempt to develop novel polystyrene composite beads for the LFC process through suspension polymerization. Low molecular weight polystyrene composite beads were initially produced, and the presence of the additives inside these beads was confirmed by Energy Dispersive X-ray (EDX) analysis. High molecular weight polystyrene composite beads were then produced. The thermal properties of these low and high molecular weight beads were then produced. The thermal properties of these low and high molecular weight beads were studied using advanced characterization techniques such as a thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC). It was found that these polystyrene composite beads degrade faster and at lower onset temperatures of degradation than the unmodified polystyrene beads in the LFC industry to reduce casting defects.

2021 ◽  
Author(s):  
Satiendra (Uttam) Jagoo

The wider adoption of the Lost Foam Casting (LFC) process by the foundry industry has been impeded by the occurrence of fold defects. It is well known that a new foamed polymer, which degrades with less thermal energy (or less endothermic) and produces fewer gaseous pyrolysis products, may be a solution to fold defects. Hence, this pioneering research was an attempt to develop novel polystyrene composite beads for the LFC process through suspension polymerization. Low molecular weight polystyrene composite beads were initially produced, and the presence of the additives inside these beads was confirmed by Energy Dispersive X-ray (EDX) analysis. High molecular weight polystyrene composite beads were then produced. The thermal properties of these low and high molecular weight beads were then produced. The thermal properties of these low and high molecular weight beads were studied using advanced characterization techniques such as a thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC). It was found that these polystyrene composite beads degrade faster and at lower onset temperatures of degradation than the unmodified polystyrene beads in the LFC industry to reduce casting defects.


2020 ◽  
Vol 40 (2) ◽  
pp. 136-142 ◽  
Author(s):  
Homa Maleki ◽  
Hossein Barani

AbstractThe stereocomplex formation is a promising method to improve the properties of poly(lactide) (PLA)-based products due to the strong interaction of the side-by-side arrangement of the molecular chains. Recently, electrospinning method has been applied to prepare PLA stereocomplex, which is more convenient. The objective of the current study is to make stereocomplexed PLA nanofibers using electrospinning method and compare their properties and structures with pure poly(l-lactide) (PLLA) fibers. The stereocomplexed fibers were electrospun from a blend solution of high molecular weight PLLA and poly(d-lactide) (1:1 ratio). The morphology of the obtained electrospun fibers was examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Differential scanning calorimetry was applied to study their thermal properties and crystallinity. Fourier transform infrared spectroscopy (FTIR) test was conducted on the samples to characterize their chemical properties. The SEM and AFM images indicated that smooth uniform fibers with a cylindrical structure were produced. Besides, the FTIR results and thermal properties confirmed that only stereocomplex crystallites formed in the resulting fibers via the electrospinning method.


2020 ◽  
Vol 206 ◽  
pp. 02023
Author(s):  
Xinqiu Hong ◽  
Liming Zou ◽  
Jingyang Zhang ◽  
Liujian Wang

In this report, high molecular weight polyvinyl alcohol (PVA) was prepared by emulsifier-free emulsion polymerization, using the redox initiator of potassium persulfate (KPS) / N,N-dimethyl ethanolamine (DMEA). The structure and property of PVA were studied by using ubbelohde viscometer, fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance hydrogen spectroscopy (1H-NMR), X-ray Diffraction (XRD), differential scanning calorimeter (DSC) and thermo gravimetric analysis (TGA). The results showed that the viscosity-average degree of polymerization (DP) of PVA 7506, which was much higher than that of PVA commonly used in industrial production. The syndiotacticity and crystallinity of PVA was 54.2 % and 35.6 %, respectively.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2158
Author(s):  
Nanci Vanesa Ehman ◽  
Diana Ita-Nagy ◽  
Fernando Esteban Felissia ◽  
María Evangelina Vallejos ◽  
Isabel Quispe ◽  
...  

Bio-polyethylene (BioPE, derived from sugarcane), sugarcane bagasse pulp, and two compatibilizers (fossil and bio-based), were used to manufacture biocomposite filaments for 3D printing. Biocomposite filaments were manufactured and characterized in detail, including measurement of water absorption, mechanical properties, thermal stability and decomposition temperature (thermo-gravimetric analysis (TGA)). Differential scanning calorimetry (DSC) was performed to measure the glass transition temperature (Tg). Scanning electron microscopy (SEM) was applied to assess the fracture area of the filaments after mechanical testing. Increases of up to 10% in water absorption were measured for the samples with 40 wt% fibers and the fossil compatibilizer. The mechanical properties were improved by increasing the fraction of bagasse fibers from 0% to 20% and 40%. The suitability of the biocomposite filaments was tested for 3D printing, and some shapes were printed as demonstrators. Importantly, in a cradle-to-gate life cycle analysis of the biocomposites, we demonstrated that replacing fossil compatibilizer with a bio-based compatibilizer contributes to a reduction in CO2-eq emissions, and an increase in CO2 capture, achieving a CO2-eq storage of 2.12 kg CO2 eq/kg for the biocomposite containing 40% bagasse fibers and 6% bio-based compatibilizer.


Marine Drugs ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. 591
Author(s):  
Bożena Grimling ◽  
Bożena Karolewicz ◽  
Urszula Nawrot ◽  
Katarzyna Włodarczyk ◽  
Agata Górniak

Chitosans represent a group of multifunctional drug excipients. Here, we aimed to estimate the impact of high-molecular weight chitosan on the physicochemical properties of clotrimazole–chitosan solid mixtures (CL–CH), prepared by grinding and kneading methods. We characterised these formulas by infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffractometry, and performed in vitro clotrimazole dissolution tests. Additionally, we examined the antifungal activity of clotrimazole–chitosan mixtures against clinical Candida isolates under neutral and acid conditions. The synergistic effect of clotrimazole and chitosan S combinations was observed in tests carried out at pH 4 on Candida glabrata strains. The inhibition of C. glabrata growth reached at least 90%, regardless of the drug/excipient weight ratio, and even at half of the minimal inhibitory concentrations of clotrimazole. Our results demonstrate that clotrimazole and high-molecular weight chitosan could be an effective combination in a topical antifungal formulation, as chitosan acts synergistically with clotrimazole against non-albicans candida strains.


2011 ◽  
Vol 31 (2-3) ◽  
Author(s):  
Sakvai Mohammed Safiullah ◽  
Deivasigamani Thirumoolan ◽  
Kottur Anver Basha ◽  
K. Mani Govindaraju ◽  
Dhanraj Gopi ◽  
...  

Abstract The synthesis of copolymers from different feed ratios of N-(p-bromophenyl)-2- methacrylamide (PBPMA) and glycidyl methacrylate (GMA) was achieved by using free radical solution polymerization technique and characterized using FT-IR, 1H and 13C NMR spectroscopy. The thermal stability of the synthesized copolymers was studied using thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The molecular weight of the copolymer is determined by gel permeation chromatography (GPC). The corrosion performances of low nickel stainless steel specimens dip coated with different composition of copolymers were investigated in 0.5 M H2SO4 using potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) techniques. The polarization and impedance measurements showed different corrosion protection efficiency with change in composition of the copolymers. It was found that the corrosion protection properties are owing to the barrier effect of the polymer layer covered on the low nickel stainless steel surfaces. However, it is observed that the mole ratio of PBPMA and GMA plays a major role in the protective nature of the copolymer.


2019 ◽  
Vol 41 (3) ◽  
pp. 388-388
Author(s):  
Khalid Saeed Khalid Saeed ◽  
Tariq Shah and Ahmad Hassan Tariq Shah and Ahmad Hassan

Effect of graphene nanoplates (GNPs) on the properties of Nylon 6,6 (Nyl 6,6) is investigated in present study. The morphological studies presented that the GNPs were dispersed inside the Nyl 6,6 matrix. The thermo gravimetric analysis (TGA) illustrated that the thermal degradation of nanocomposites samples were started at the range of 350-393 oC, which was appreciably higher than neat Nyl 6,6 (360 oC). The differential scanning calorimetry (DSC) analyses revealed that the crystallization temperature (Tc) of GNPs/Nyl 6,6 increased as increased the addition of GNPs, which might be due to the nucleation effect of GNPs. The mechanical properties of Nyl 6,6 was enhanced by incorporation of GNPs upto the addition of an optimal quantity of filler (5%wt GNPs) into the polymer matrix. The stress yield and Young’s modulus of 5%wt GNPs/Nyl 6,6 was 96.79 and 1.54, N/nm2, respectively. Both Nyl 6,6 and nanocomposites samples were also used for the adsorption of Neutral red chloride (NRC) dye, which significantly remove the dye from the aqueous solution. The neat nylon 6,6 and GNPs (5 and 10 wt%)/Nyl 6,6 adsorbed about 88.49, 93.15, and 93.60% within 2 h, respectively.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2230
Author(s):  
Nontsikelelo Noxolo Tafu ◽  
Victoria A. Jideani

Moringa oleifera leaf powder (MOLP) has been identified as the most important functional ingredient owing to its rich nutritional profile and healthy effects. The solubility and functional properties of this ingredient can be enhanced through solid dispersion technology. This study aimed to investigate the effects of polyethylene glycols (PEGs) 4000 and 6000 as hydrophilic carriers and solid dispersion techniques (freeze-drying, melting, solvent evaporation, and microwave irradiation) on the crystallinity and thermal stability of solid-dispersed Moringa oleifera leaf powders (SDMOLPs). SDMOLPs were dully characterized using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR). The PXRD results revealed that the solid dispersions were partially amorphous with strong diffraction peaks at 2θ values of 19° and 23°. The calorimetric and thermogravimetric curves showed that PEGs conferred greater stability on the dispersions. The FTIR studyrevealed the existence of strong intermolecular hydrogen bond interactions between MOLP and PEG functional groups. MOLP solid dispersions may be useful in functional foods and beverages and nutraceutical formulations.


2021 ◽  
pp. 1-8
Author(s):  
Ching-Cheng Huang

BACKGROUND: The biologic scaffolds derived from decellularized tissues and organs have been successfully developed in a variety of preclinical and/or clinical studies. OBJECTIVE: The new decellularized liver-regenerative 3D printing biomaterials were designed and prepared for cell-based liver therapies. METHODS: An extraction process was employed to remove the tissue and cellular molecules from porcine liver via pretreatment of supercritical fluid of carbon dioxide (ScCO2). Varying porosities of the decellularized liver tissues were created using papain-containing reagent treatments after ScCO2. RESULTS: The resulting liver-regenerative 3D printing biomaterials of decellularized liver collagen scaffolds were characterized by Fourier transform infrared spectroscopy, thermo-gravimetric analysis, differential scanning calorimetry and scanning electron microscopy. CONCLUSIONS: The decellularized liver collagen scaffolds with good thermal stability (>150 °C) were obtained and employed as liver-regenerative 3D printing biomaterials for cell-based liver therapies.


2018 ◽  
Vol 33 (4) ◽  
pp. 435-450 ◽  
Author(s):  
Patrycja Bazan ◽  
Stanisław Kuciel ◽  
Mariola Sądej

The work has evaluated the possibility of the potential reinforcing of poly(oxymethylene) (POM) by basalt fibers (BFs) and influence of BFs addition on thermal properties. Two types of composites were produced by injection molding. There were 20 and 40 wt% long BFs content with an average length of 1 mm. The samples were made without using a compatibilizer. In the experimental part, the basic mechanical properties (tensile strength, modulus of elasticity, strain at break, flexural modulus, flexural strength, and deflection at 3.5% strain) of composites based on POM were determined. Tensile properties were also evaluated at three temperatures −20°C, 20°C, and 80°C. The density and Charpy impact of the produced composites were also examined. The influence of water absorption on mechanical properties was investigated. Thermal properties were conducted by the differential scanning calorimetry, thermal gravimetric analysis, and fourier transform infrared (FTIR)-attenuation total reflection (ATR) spectroscopy analysis. In order to make reference to the effects of reinforcement and determine the structure characteristics, scanning electron microscopy images were taken. The addition of 20 and 40 wt% by weight of fibers increases the strength and the stiffness of such composites by more than 30–70% in the range scale of temperature. Manufactured composites show higher thermal and dimensional stability in relation to neat POM.


Sign in / Sign up

Export Citation Format

Share Document