scholarly journals Guidelines for reporting methods to estimate metabolic rates by aquatic intermittent-flow respirometry

2021 ◽  
Author(s):  
Shaun Killen ◽  
Emil Christensen ◽  
Daphne Cortese ◽  
Libor Zavorka ◽  
Lucy Cotgrove ◽  
...  

Interest in the measurement of metabolic rates is growing rapidly, due to the relevance of metabolism in understanding organismal physiology, behaviour, evolution, and responses to environmental change. The study of metabolism in aquatic organisms is experiencing an especially pronounced expansion, with more researchers utilizing intermittent-closed respirometry as a research tool than ever before. Despite this, there remain no published guidelines on the reporting of methodological details when using intermittent-closed respirometry. Using a survey of the existing literature, we show that this lack of recommendations has led to incomplete and inconsistent reporting of methods for intermittent-closed respirometry over the last several decades. We also provide the first guidelines for reporting such methods, in the form of a checklist of details that are the minimum required for the interpretation, evaluation, and replication of experiments using intermittent-closed respirometry. This should increase consistency of the reporting of methods for studies that use this research technique. With the steep increase in studies using intermittent-closed respirometry over the last several years, now is the ideal time to standardise the reporting of methods so that data can be properly assessed by other scientists and conservationists.

2021 ◽  
Vol 224 (18) ◽  
Author(s):  
Shaun S. Killen ◽  
Emil A. F. Christensen ◽  
Daphne Cortese ◽  
Libor Závorka ◽  
Tommy Norin ◽  
...  

ABSTRACT Interest in the measurement of metabolic rates is growing rapidly, because of the importance of metabolism in advancing our understanding of organismal physiology, behaviour, evolution and responses to environmental change. The study of metabolism in aquatic animals is undergoing an especially pronounced expansion, with more researchers utilising intermittent-flow respirometry as a research tool than ever before. Aquatic respirometry measures the rate of oxygen uptake as a proxy for metabolic rate, and the intermittent-flow technique has numerous strengths for use with aquatic animals, allowing metabolic rate to be repeatedly estimated on individual animals over several hours or days and during exposure to various conditions or stimuli. There are, however, no published guidelines for the reporting of methodological details when using this method. Here, we provide the first guidelines for reporting intermittent-flow respirometry methods, in the form of a checklist of criteria that we consider to be the minimum required for the interpretation, evaluation and replication of experiments using intermittent-flow respirometry. Furthermore, using a survey of the existing literature, we show that there has been incomplete and inconsistent reporting of methods for intermittent-flow respirometry over the past few decades. Use of the provided checklist of required criteria by researchers when publishing their work should increase consistency of the reporting of methods for studies that use intermittent-flow respirometry. With the steep increase in studies using intermittent-flow respirometry, now is the ideal time to standardise reporting of methods, so that – in the future – data can be properly assessed by other scientists and conservationists.


2018 ◽  
Vol 96 (11) ◽  
pp. 1264-1271 ◽  
Author(s):  
Michael J. Louison ◽  
J.A. Stein ◽  
C.D. Suski

Prior work has described a link between an individual’s metabolic rate and a willingness to take risks. One context in which high metabolic rates and risk-prone behaviors may prove to be maladaptive is in fish that strike fishing lures only to be captured by anglers. It has been shown that metabolic phenotype may be altered by angling; however, little work has assessed metabolic rate in fish and its relationship to angling vulnerability in a realistic angling trial. To address this, we subjected a set of bluegill sunfish (Lepomis macrochirus Rafinesque, 1819) to a series of angling sessions. Following this, a subset of 23 fish that had been captured at least once and 25 fish that had not been captured were assessed for metabolic phenotype (standard and maximum metabolic rates, postexercise oxygen consumption, and recovery time) via intermittent flow respirometry. Contrary to predictions, captured and uncaptured fish did not differ in any measurement of metabolic rate. These results suggest that metabolic phenotype is not a determinant of angling vulnerability within the studied context. It is possible, therefore, that previously described alterations in metabolic phenotype owing to angling pressure may be context-specific and may not apply to all species and angling contexts.


2015 ◽  
Vol 12 (15) ◽  
pp. 4665-4692 ◽  
Author(s):  
G. Aloisi

Abstract. Coccolithophores are sensitive recorders of environmental change. The size of their coccosphere varies in the ocean along gradients of environmental conditions and provides a key for understanding the fate of this important phytoplankton group in the future ocean. But interpreting field changes in coccosphere size in terms of laboratory observations is hard, mainly because the marine signal reflects the response of multiple morphotypes to changes in a combination of environmental variables. In this paper I examine the large corpus of published laboratory experiments with coccolithophores looking for relations between environmental conditions, metabolic rates and cell size (a proxy for coccosphere size). I show that growth, photosynthesis and, to a lesser extent, calcification covary with cell size when pCO2, irradiance, temperature, nitrate, phosphate and iron conditions change. With the exception of phosphate and temperature, a change from limiting to non-limiting conditions always results in an increase in cell size. An increase in phosphate or temperature (below the optimum temperature for growth) produces the opposite effect. The magnitude of the coccosphere-size changes observed in the laboratory is comparable to that observed in the ocean. If the biological reasons behind the environment–metabolism–size link are understood, it will be possible to use coccosphere-size changes in the modern ocean and in marine sediments to investigate the fate of coccolithophores in the future ocean. This reasoning can be extended to the size of coccoliths if, as recent experiments are starting to show, coccolith size reacts to environmental change proportionally to coccosphere size. The coccolithophore database is strongly biased in favour of experiments with the coccolithophore Emiliania huxleyi (E. huxleyi; 82 % of database entries), and more experiments with other species are needed to understand whether these observations can be extended to coccolithophores in general. I introduce a simple model that simulates the growth rate and the size of cells forced by nitrate and phosphate concentrations. By considering a simple rule that allocates the energy flow from nutrient acquisition to cell structure (biomass) and cell maturity (biological complexity, eventually leading to cell division), the model is able to reproduce the covariation of growth rate and cell size observed in laboratory experiments with E. huxleyi when these nutrients become limiting. These results support ongoing efforts to interpret coccosphere and coccolith size measurements in the context of climate change.


Biology ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 56 ◽  
Author(s):  
Schwieterman ◽  
Crear ◽  
Anderson ◽  
Lavoie ◽  
Sulikowski ◽  
...  

Understanding how rising temperatures, ocean acidification, and hypoxia affect the performance of coastal fishes is essential to predicting species-specific responses to climate change. Although a population’s habitat influences physiological performance, little work has explicitly examined the multi-stressor responses of species from habitats differing in natural variability. Here, clearnose skate (Rostaraja eglanteria) and summer flounder (Paralichthys dentatus) from mid-Atlantic estuaries, and thorny skate (Amblyraja radiata) from the Gulf of Maine, were acutely exposed to current and projected temperatures (20, 24, or 28 °C; 22 or 30 °C; and 9, 13, or 15 °C, respectively) and acidification conditions (pH 7.8 or 7.4). We tested metabolic rates and hypoxia tolerance using intermittent-flow respirometry. All three species exhibited increases in standard metabolic rate under an 8 °C temperature increase (Q10 of 1.71, 1.07, and 2.56, respectively), although this was most pronounced in the thorny skate. At the lowest test temperature and under the low pH treatment, all three species exhibited significant increases in standard metabolic rate (44–105%; p < 0.05) and decreases in hypoxia tolerance (60–84% increases in critical oxygen pressure; p < 0.05). This study demonstrates the interactive effects of increasing temperature and changing ocean carbonate chemistry are species-specific, the implications of which should be considered within the context of habitat.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lynn Govaert ◽  
Luis J. Gilarranz ◽  
Florian Altermatt

AbstractSpecies react to environmental change via plastic and evolutionary responses. While both of them determine species’ survival, most studies quantify these responses individually. As species occur in communities, competing species may further influence their respective response to environmental change. Yet, how environmental change and competing species combined shape plastic and genetic responses to environmental change remains unclear. Quantifying how competition alters plastic and genetic responses of species to environmental change requires a trait-based, community and evolutionary ecological approach. We exposed unicellular aquatic organisms to long-term selection of increasing salinity—representing a common and relevant environmental change. We assessed plastic and genetic contributions to phenotypic change in biomass, cell shape, and dispersal ability along increasing levels of salinity in the presence and absence of competition. Trait changes in response to salinity were mainly due to mean trait evolution, and differed whether species evolved in the presence or absence of competition. Our results show that species’ evolutionary and plastic responses to environmental change depended both on competition and the magnitude of environmental change, ultimately determining species persistence. Our results suggest that understanding plastic and genetic responses to environmental change within a community will improve predictions of species’ persistence to environmental change.


2020 ◽  
Vol 635 ◽  
pp. 81-87 ◽  
Author(s):  
A Schwartzbach ◽  
JW Behrens ◽  
JC Svendsen

Reefs are structurally complex habitats that are degraded in numerous coastal areas. Structural complexity is often associated with elevated fish abundance, and recent studies have indicated that such structural complexity (e.g. reefs) not only acts as a fish aggregator, but also increases fish production. The objective of this study was to advance this knowledge by investigating if an underlying mechanism of the observed productivity is related to reduced metabolic rates (proxy for energy use) of fish in reef habitats. Using juvenile Atlantic cod Gadus morhua, we tested the hypothesis that fish energy use differs between fish occupying stone reef and sand bottom habitats. Metabolic rate (MO2) was estimated using intermittent flow respirometry in simulated stone reef and sand bottom habitats over 24 h. Results revealed that G. morhua in the stone reef habitat exhibited significantly reduced accumulated MO2 compared to G. morhua in the sand bottom habitat. Likewise, there was a tendency for lower mean standard metabolic rates of the fish in stone reefs, although this pattern was not statistically significant. There are many mechanisms that may underpin elevated productivity in structurally complex habitats such as reefs, including better access to shelter and increased food availability. Our study adds to these mechanisms by showing that G. morhua save energy when occupying stone reefs as compared to sandy bottoms, energy which may be allocated to somatic and gonadal growth.


2018 ◽  
Vol 124 (3) ◽  
pp. 741-749
Author(s):  
Daniel W. Baker ◽  
Michael E. Hudson ◽  
Emily J. Frost ◽  
Mary A. Sewell

Measurement of rates of oxygen consumption ( Mo2) in small aquatic embryos or larvae (<1 mm) in response to altered environmental conditions has traditionally been challenging. Here, using modifications of a commercially available fluorescent optode flow-through cell (FTC; PreSens FTC-PSt3) and routine laboratory supplies (syringes, stopcocks, tubing), we have constructed a manual intermittent flow respirometer (MIFR) that allows measurement of Mo2 in small numbers of individuals when sequentially exposed to different environmental conditions (e.g., changes in seawater pH) through a gravity-driven media replacement perfusion system. We first show that the FTC can be used in “static” mode while incubating small numbers of embryos/larvae contained within the planar oxygen sensor (POS) chamber with Nitex filters. We then demonstrate the use of the MIFR by exposing larval echinoderms ( Fellaster zelandiae, Evechinus chloroticus, and Centrostephanus rodgersii) to seawater equilibrated with elevated CO2 and measured Mo2 during acute and chronic exposure to hypercapnia. This MIFR method will allow investigators to address questions regarding the respiratory physiology of small aquatic animals, such as the thresholds for metabolic depression in embryonic and larval forms. NEW & NOTEWORTHY A manual intermittent flow respirometer (MIFR), allowing media exchange in a flow-through cell containing small aquatic organisms, permits repeated measurement of Mo2 of individuals not only in a single medium (e.g., technical replication), but also in different media (here, high CO2-equilibrated seawater), enabling measurement of acute physiological responses to changed conditions. This versatile technique has wide-ranging implications for the study of the Mo2 response of aquatic organisms in the face of climate change.


Sign in / Sign up

Export Citation Format

Share Document