Design of refractory linings for balanced energy efficiency, uptime, and capacity in lime kilns

TAPPI Journal ◽  
2015 ◽  
Vol 14 (2) ◽  
pp. 141-151
Author(s):  
J. PETER GOROG ◽  
JAMES G. HEMRICK ◽  
HARALD A. WALTER ◽  
W. RAY LEARY ◽  
MURRAY ELLIS

In this work a computer model is used to examine how refractory linings with both high alumina and basic refractory bricks affect kiln operations. Recommendations are made based on the results to aid mill personnel in designing optimized refractory linings for specific situations. Kilns used to regenerate lime in the kraft process are highly energy intensive. Throughout the 1990s, in response to increasing fuel prices, the pulp and paper industry primarily used backup insulation in conjunction with high alumina brick to line calcining zones of their kilns. The dramatic decline in price of natural gas over the past decade, in combination with mounting pressures to increase production of existing assets, has led many mills to focus more on increasing uptime and capacity rather than on energy savings. To this end, a growing number of mills are using basic (magnesia based) brick instead of high alumina brick to line calcining zones. While the use of basic brick can increase the uptime and reduce the cost to maintain the refractory lining, it can dramatically increase the shell temperatures and heat losses. Tradeoffs, therefore, are created among energy efficiency, capacity, and uptime.

Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1816 ◽  
Author(s):  
Kwan Byum Maeng ◽  
Jiyeon Jung ◽  
Yoonmo Koo

The building sector is considered to be important for Korean energy issues as it accounts for approximately 20% of Korea’s final energy consumption. As one of Korea’s passive strategies in its emission reduction plan is reducing energy consumption through improvements in energy efficiency because the energy loss mostly occurs from window sets, this study aims to examine the preferences and role of the energy efficiency level of window sets in South Korea. Given that the lifespan of a building exceeds 20 years, a building’s energy efficiency significantly impacts accumulated energy savings. However, window sets affect not only energy efficiency, but also the interior appearance of the building; therefore, it is important to understand consumer preferences and to examine their effect on building energy reduction accordingly. Using a mixed logit model, this study analyzes window set preferences and energy savings. As a result, this study determines that consumers consider the energy efficiency level to be the second most important factor in determining window preference, following the cost of the window. In addition, this study found that the marginal willingness to pay for efficiency level 2 window sets compared to level 3 window sets is USD 1256. For level 1 window sets, this figure increases to USD 3140. Further, a scenario analysis is conducted to analyze the government incentive program’s effectiveness in encouraging consumers to purchasing higher energy efficiency more efficient products, and thus in promoting the eco-friendly consumption of in households. Taking into consideration of households’ willingness to pay and cost saving amount for using energy efficient window sets, the optimal value of government incentives of is found to be approximately USD 700 is found to be optimal.


1980 ◽  
Vol 9 (1) ◽  
pp. 13-15
Author(s):  
James G. Beierlein ◽  
Robert J. Campbell

The feasibility of reducing delivery frequency as a means of lowering energy and transportation costs is examined. Four reduced delivery situations are examined using a net present value criteria. While substantial energy savings are possible the cost of equipment necessary to accommodate these reductions outweighs the energy savings at current fuel prices. Substantial fuel price increases are required before such reductions are worthwhile. Good management requires examination of the net effect of energy savings on net revenue.


2017 ◽  
Vol 13 (2) ◽  
Author(s):  
Débora Adiane Borges ◽  
Antover Panazzolo Sarmento ◽  
Gabriel Bernardes de Carvalho

RESUMO: Um dos métodos usados para se alcançar a eficiência energética é o uso de aparelhos energeticamente eficientes. Este estudo objetivou avaliar a eficiência energética e a viabilidade da troca de lâmpadas fluorescentes por lâmpadas de LED em uma residência projetada para a cidade de Catalão-GO. O método da pesquisa foi composto por três etapas: i) uma pesquisa de mercado, ii) elaboração de dois projetos luminotécnicos com lâmpadas de LED e fluorescentes baseado no método dos lúmens para uma casa-piloto da cidade de Catalão, iii) análise dos resultados com elaboração de tabelas que apresentaram a relação custo-benefício dessas lâmpadas e o impacto ambiental avaliado pela emissão de CO2. Ressalta-se que não houve comparações com lâmpadas incandescentes por estar previsto que as mesmas deixarão completamente o mercado em 2017. Constatou-se que é viável a troca das lâmpadas fluorescente pelas de LED, pois embora tenham um custo inicial para aquisição mais alto, elas compensam esse valor através da economia de energia e alta durabilidade; além de reduzirem significativamente a emissão de CO2. Logo, o trabalho contribui inserindo uma maneira simples de garantir eficiência energética e que beneficia o próprio usuário.
 
 ABSTRACT: One of the methods used to achieve energy efficiency is the use of energy efficient appliances. This study aims to evaluate energy efficiency and the viability of exchanging fluorescent lamps with LED lamps in a residence projected for the city of Catalão, Goiás - Brazil. The research method consisted of three stages: i) market research, ii) development of two lighting projects with LED and fluorescent lamps based on the Lumen Method for a pilot house in Catalan, iii) analysis of results drafting tables that showed the cost-benefit of these lamps and the environmental impact by CO2 emissions. It is noteworthy that not compared with incandescent light bulbs to be expected that they completely leave the market in 2017. It was found that it is feasible to exchange the fluorescent lamps with LED as these have a higher initial cost to purchase, but compensate this value through energy savings and high durability and significantly reduce CO2 emissions. Soon, the work contributes inserting a simple way to contribute to energy efficiency and that benefits the user himself.


Author(s):  
Yuriy Spirin ◽  
Vladimir Puntusov

In the Kaliningrad region there are about 70 % of all polder lands in Russia. On these lands with high potential fertility, it is advisable to intensive agriculture. The area for the average moisture year is an area with excessive moisture, which indicates the need to maintain the rate of drainage on agricultural land. Many different factors play a role in ensuring the drainage rate, one of which is pumping stations and pumping equipment installed on them. An important parameter in the use of pump-power equipment is energy consumption, since in this industry it is a considerable expense item. Improving the energy efficiency of pumping stations on polders is a pressing issue today. At the majority of polder pumping stations, domestic power pumping equipment is installed with excess power and head of 4–8 meters, and a new one is selected based on the maximum possible head in a given place. In the Kaliningrad region, the energy efficiency of polder pumping equipment has never been analyzed. In this paper, a statistical processing of the geodesic pressure of water at the polder pumping stations of the Slavsk region for 2000–2002 was carried out. On the basis of these data and data on the hydraulic characteristics of pressure pipelines, the calculated water pressures were determined for the rational selection of pumping equipment. The calculation of the economic efficiency of pumps with optimal power compared with pumps of excess capacity. The results of the study can serve as a justification for the transition to the pumping equipment with less power and pressure, which will lead to a decrease in the cost of money for electricity.


2012 ◽  
Vol 9 (8) ◽  
pp. 829-840 ◽  
Author(s):  
R. Saidur ◽  
M. T. Sambandam ◽  
M. Hasanuzzaman ◽  
D. Devaraj ◽  
S. Rajakarunakaran

2020 ◽  
Vol 13 (1) ◽  
pp. 235
Author(s):  
Fernando Martín-Consuegra ◽  
Fernando de Frutos ◽  
Ignacio Oteiza ◽  
Carmen Alonso ◽  
Borja Frutos

This study quantified the improvement in energy efficiency following passive renovation of the thermal envelope in highly inefficient residential complexes on the outskirts of the city of Madrid. A case study was conducted of a single-family terrace housing, representative of the smallest size subsidized dwellings built in Spain for workers in the nineteen fifties and sixties. Two units of similar characteristics, one in its original state and the other renovated, were analyzed in detail against their urban setting with an experimental method proposed hereunder for simplified, minimal monitoring. The dwellings were compared on the grounds of indoor environment quality parameters recorded over a period covering both winter and summer months. That information was supplemented with an analysis of the energy consumption metered. The result was a low-cost, reasonably accurate measure of the improvements gained in the renovated unit. The monitoring output data were entered in a theoretical energy efficiency model for the entire neighborhood to obtain an estimate of the potential for energy savings if the entire urban complex were renovated.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2416
Author(s):  
Marina Dorokhova ◽  
Fernando Ribeiro ◽  
António Barbosa ◽  
João Viana ◽  
Filipe Soares ◽  
...  

The energy efficiency requirements of most energy-consuming sectors have increased recently in response to climate change. For buildings, this means targeting both facility managers and building users with the aim of identifying potential energy savings and encouraging more energy-responsible behaviors. The Information and Communication Technology (ICT) platform developed in Horizon 2020 FEEdBACk project intends to fulfill these goals by enabling the optimization of energy consumption, generation, and storage and control of flexible devices without compromising comfort levels and indoor air quality parameters. This work aims to demonstrate the real-world implementation and functionality of the ICT platform composed of Load Disaggregation, Net Load Forecast, Occupancy Forecast, Automation Manager, and Behavior Predictor applications. Particularly, the results obtained by individual applications during the test phase are presented alongside the specific metrics used to evaluate their performance.


2020 ◽  
Vol 14 (1) ◽  
pp. 108-125 ◽  
Author(s):  
Salman Haider ◽  
Javed Ahmad Bhat

Purpose Because of growing energy consumption and increasing absolute CO2 emissions, the recent calibrations about the environmental sustainability across the globe have mandated to achieve the minimal energy consumption through employing energy-efficient technology. This study aims to estimate linkage between simple measure of energy efficiency indicator that is reciprocal of energy intensity and total factor productivity (TFP) in case of Indian paper industry for 21 major states. In addition, the study incorporates the other control variables like labour productivity, capital utilization and structure of paper industry to scrutinize their likely impact on energy efficiency performance of the industry. Design/methodology/approach To derive the plausible estimates of TFP, the study applies the much celebrated Levinsohn and Petrin (2003) methodology. Using the regional level data for the period 2001-2013, the study employs instrumental variable-generalized method of moments (GMM-IV) technique to examine the nature of relationship among the variables involved in the analysis. Findings An elementary examination of energy intensity shows that not all states are equally energy intensive. States like Goa, Rajasthan, Jharkhand and Tamil Nadu are less energy intensive, whereas Uttar Pradesh, Kerala, Chhattisgarh, Assam and Punjab are most energy-intensive states on the basis of their state averages over the whole study period. The results estimated through GMM-IV show that increasing level of TFP is associated with lower level of energy per unit of output. Along this better skills and capacity utilization are also found to have positive impact on energy efficiency performance of industry. However, the potential heterogeneity within the structure of industry itself is found responsible for its higher energy intensity. Practical implications States should ensure and undertake substantial investment projects in the research and development of energy-efficient technology and that targeted allocations could be reinforced for more fruitful results. Factors aiming at improving the labour productivity should be given extra emphasis together with capital deepening and widening, needed for energy conservation and environmental sustainability. Given the dependence of structure of paper industry on the multitude of factors like regional inequality, economic growth, industrial structure and the resource endowment together with the issues of fragmented sizes, poor infrastructure and availability and affordability of raw materials etc., states should actively promote the coordination and cooperation among themselves to reap the benefits of technological advancements through technological spill overs. In addition, owing to their respective state autonomies, state governments should set their own energy saving targets by taking into account the respective potentials and opportunities for the different industries. Despite the requirement of energy-efficient innovations, however, the cons of technological advancements and the legal frameworks on the employment structure and distributional status should be taken care of before their adoption and execution. Originality/value To the best of our knowledge, this is the first study that empirically examines the linkage between energy efficiency and TFP in case of Indian paper industry. The application of improved methods like Levinsohn and Petrin (2003) to derive the TFP measure and the use of GMM-IV to account for potential econometric problems like that of endogeneity will again add to the novelty of study.


Author(s):  
Niko Karlén ◽  
Tatiana Minav ◽  
Matti Pietola

Several types of off-road machinery, such as industrial trucks, forklifts, excavators, mobile cranes, and wheel loaders, are set to be operated in environments which can differ considerably from each other. This sets certain limits for both the drive transmissions and working hydraulics of these machines. The ambient temperature must be taken into account when selecting the hydraulic fluid since the viscosity and density of the fluid are changing at different operating temperatures. In addition to the temperature, energy efficiency can also be a problem in off-road machinery. In most off-road machines, diesel engines are employed to produce mechanical energy. However, there are energy losses during the working process, which causes inefficiency in produced energy. For better energy efficiency, hybridization in off-road machinery is an effective method to decrease fuel consumption and increase energy savings. One of the possible methods to save energy with hybrids is energy regeneration. However, it means that the basic hydraulic system inside off-road machinery needs to be modified. One solution for this is to utilize zonal or decentralized approach by means of direct driven hydraulic (DDH) system. This paper aims to investigate a DDH system for off-road machinery by means of modelling and analyzing the effect of the temperature. In the direct-driven hydraulic system, the actuator is controlled directly by the hydraulic pump which is operated by the electric motor. Specifically, it is a valveless closed-loop hydraulic system. Thus, there will be no energy losses caused by the valves, and the total efficiency is assumed to be significantly higher. In order to examine the DDH system, a thermo-hydraulic model was created. Additionally, a thermal camera was utilized in order to illustrate the temperature changes in the components of the DDH system. To reproduce the action of the system in different circumstances DDH system was run at different ambient temperatures, and the component temperatures in the system were measured and saved for the analysis. The thermo hydraulic model was proven capable to follow the general trend of heating up.


Sign in / Sign up

Export Citation Format

Share Document