scholarly journals Influence of the 3D Printing Process Settings on Tensile Strength of PLA and HT-PLA

2020 ◽  
Vol 65 (1) ◽  
pp. 38-46
Author(s):  
Muammel M. Hanon ◽  
Róbert Marczis ◽  
László Zsidai

Fused Deposition Modelling (FDM) is presently the most common utilized 3D printing technology. Since this printing technology makes the bodies anisotropic, therefore, investigate the process with different settings is worthwhile. Tensile test specimens of two plastics have been carried out to examine the mechanical properties. Polylactic acid (PLA) and High Temperature PLA (HT-PLA) are the used materials for this purpose. A total of seventy-two test pieces of the two used polymers were printed and evaluated. Three parameters were examined in twelve different settings when printing the tensile test specimens. The considered settings are; six raster directions, three build orientations and two filling factors. The differences in stress-strain curves, tensile strength values and elongation at break were compared among the tested samples. The broken specimens after the tensile test are illustrated, which gave insight into how the test pieces printed with different parameters were fractured. The optimum printing setting is represented at crossed 45/−45° raster direction, X orientation and 100 % fill factor, where the highest tensile strength of 59.7 MPa at HT-PLA and the largest elongation of about 3.5 % at PLA were measured.

2019 ◽  
Vol 821 ◽  
pp. 167-173 ◽  
Author(s):  
Muammel M. Hanon ◽  
Róbert Marczis ◽  
László Zsidai

In this paper, the mechanical properties of Polyethylene terephthalate-glycol (PETG) tensile test specimens have been investigated. The test pieces were prepared using fused deposition modelling (FDM) 3D printing technology. Three print settings were examined which are: raster direction angles, print orientations, and infill percentage and patterns in order to evaluate the anisotropy of objects when employing FDM print method. The variations in stress-strain curves, tensile strength values and elongation at break among the tested samples were studied and compared. Illustration for the broken specimens after the tensile test was accomplished to know how the test pieces printed with various parameters were fractured. A comparison with some previous results regarding the elongation at break has been carried out.


2021 ◽  
Vol 11 (16) ◽  
pp. 7338
Author(s):  
Alaeddine Oussai ◽  
Zoltán Bártfai ◽  
László Kátai

Fused Deposition Modelling (FDM) is the most common 3D printing technology. An object formed through continuous layering until completion is known as an additive process while other processes with different methods are also relevant. In this paper, mechanical properties were analysed using two distinct kinds of printed polyethylene terephthalate (PET) as tensile test specimens. The materials used consist of recycled PET and virgin PET. An assessment of all the forty test pieces of both kinds of PET was undertaken. A comparison of the test samples’ tensile strength values, difference in stress-strain curves, and elongation at break was also carried out. The reasoning behind the fracturing of test pieces that printed with different settings is presented in part by the depiction of the fractured specimens following the tensile test. An optimal route was revealed to be 3D printing with recycled PET, as per the mechanical testing. The hardness of the recycled filament decreased to 6%, while the tensile strength and shear strength increased to 14.7 and 2.8%, respectively. Nonetheless, no changes occurred to the tensile modulus elasticity. Despite notable differences being observed in the results of the recycled PET filament, no substantial differences were found prior or post-recycling in the mechanical properties of the PET filament. In conclusion, the demand for improved recycled 3D printing filament technologies is heightened due to the comparable mechanical features of the specimens of both the 3D printed recycled and virgin materials. With tensile strength figures reaching as high as 43.15MPa at Recycled PET and 3.12% being the greatest elongation at 40% Recycled PET, 100% Recycled is the ideal printing setting.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2497 ◽  
Author(s):  
Yao Li ◽  
Yan Lou

Compared with laser-based 3D printing, fused deposition modelling (FDM) 3D printing technology is simple and safe to operate and has a low cost and high material utilization rate; thus, it is widely used. In order to promote the application of FDM 3D printing, poly-ether-ether-ketone (PEEK) was used as a printing material to explore the effect of multi-factor coupling such as different printing temperatures, printing directions, printing paths, and layer thicknesses on the tensile strength, bending strength, crystallinity, and grain size of FDM printed PEEK parts. The aim was to improve the mechanical properties of the 3D printed PEEK parts and achieve the same performance as the injection molded counterparts. The results show that when the thickness of the printed layer is 0.1 mm and the printing path is 180° horizontally at 525 °C, the tensile strength of the sample reaches 87.34 MPa, and the elongation reaches 38%, which basically exceeds the tensile properties of PEEK printed parts reported in previous studies and is consistent with the tensile properties of PEEK injection molded parts. When the thickness of the printed layer is 0.3 mm, the printing path is 45°, and with vertical printing direction at a printing temperature of 525 °C, the bending strength of the sample reaches 159.2 MPa, which exceeds the bending performance of injection molded parts by 20%. It was also found that the greater the tensile strength of the printed specimen, the more uniform the size of each grain, and the higher the crystallinity of the material. The highest crystallinity exceeded 30%, which reached the crystallinity of injection molded parts.


Author(s):  
Tran Linh Khuong ◽  
Zhao Gang ◽  
Muhammad Farid ◽  
Rao Yu ◽  
Zhuang Zhi Sun ◽  
...  

Biomimetic robots borrow their structure, senses and behavior from animals, such as humans or insects, and plants. Biomimetic design is design ofa machine, a robot or a system in engineeringdomain thatmimics operational and/orbehavioral model of a biological system in nature. 3D printing technology has another name as rapid prototyping technology. Currently it is being developed fastly and widely and is applied in many fields like the jewelry, footwear, industrial design, architecture, engineering and construction, automotive, aerospace, dental and medical industry, education, geographic information system, civil engineering, guns. 3D printing technology is able to manufacture complicated, sophisticated details that the traditional processing method cannot manufacture. Therefore, 3D printing technology can be seen as an effective tool in biomimetic, which can accurately simulate most of the biological structure. Fused Deposition Modeling (FDM) is a technology of the typical rapid prototyping. The main content of the article is the focusing on tensile strength test of the ABS-Acrylonitrile Butadiene Styrene material after using Fused Deposition Modeling (FDM) technology, concretization after it’s printed by UP2! 3D printer. The article focuses on two basic features which are Tensile Strength and Determination of flexural properties.


1970 ◽  
Vol 3 (1) ◽  
pp. 44-51
Author(s):  
Paweł Żur ◽  
Alicja Kołodziej ◽  
Andrzej Baier ◽  
Grzegorz Kokot

The paper presents research on the method of 3D-printing ABS (Acrylonitrile butadiene styrene). Series of specimens were 3D-printed in FDM (Fused Deposition Modelling) technology with variable parameters. The influence of the following parameters has been checked: temperature of printing and infill density. Moreover, the material properties of raw, unprocessed ABS have been inspected. The tensile strength of specimens and Young’s modulus have been determined in a static tensile test. Tests were carried out in compliance with the ASTM D638-14 standard. Obtained results were then compared with the material datasheet. Optimum printing method has been defined. The carried out research resulted in optimizing the printing method for ABS vehicle parts applied in Silesian Greenpower electric car. The car has been developed by students of The Silesian University of Technology in Gliwice, Poland as an interfaculty students’ project. Results of the tensile test research have been analysed and discussed and conclusions have been presented in the following article.


2021 ◽  
Vol 1208 (1) ◽  
pp. 012019
Author(s):  
Adi Pandzic ◽  
Damir Hodzic

Abstract One of the advantages provided by fused deposition modelling (FDM) 3D printing technology is the manufacturing of product materials with infill structure, which provides advantages such as reduced production time, product weight and even the final price. In this paper, the tensile mechanical properties, tensile strength and elastic modulus, of PLA, Tough PLA and PC FDM 3D printed materials with the infill structure were analysed and compared. Also, the influence of infill pattern on tensile properties was analysed. Material testing were performed according to ISO 527-2 standard. All results are statistically analysed and results showed that infill pattern have influence on tensile mechanical properties for all three materials.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Wattanachai Prasong ◽  
Paritat Muanchan ◽  
Akira Ishigami ◽  
Supaphorn Thumsorn ◽  
Takashi Kurose ◽  
...  

Biodegradable poly(lactic acid) (PLA) filaments have been widely used in the fused deposition modeling (FDM) 3D printing technology. However, PLA has low toughness and low thermal resistance that affects printability and restricts its industrial applications. In this study, PLA was compounded with 0 to 40 wt% of poly(butylene adipate-co-terephthalate) (PBAT) and varied content of nano talc at 0 to 40 wt% in a twin screw extruder. The compounds were reextruded to filaments using a capillary rheometer. PLA/PBAT blends and their composite filaments were printed with a FDM 3D printing machine. Morphology, rheological behaviour, thermal characteristic, surface roughness, and mechanical property of 3D printing of the blends and the composites were investigated. Complex viscosity of the blends and the composites increased with increase of the PBAT and the nano talc contents. The incorporation of the nano talc enhanced crystallization temperature and reduced the coefficient of volume expansion of the composites. It was found that the PLA/PBAT blends and composites were excellent in both printability and dimension stability at PBAT content 10-30 wt% and nano talc up to 10 wt%. Interestingly, it was possible to print the composite filaments at an angle up to 75° during the overhang test without a supporter. From the vertical specimens, the surface roughness improved due to the incorporation of the nano talc. Tensile strength of the blends and the composites decreased, whereas elongation at break increased when the PBAT and the nano talc contents were increased. The reduction of tensile strength was attributed to agglomeration of the PBAT dispersed phase and less adhesion between the nano talc and the matrix. It can be noted that the composite 3D printing product showed superior elongation at break up to 410% by adding nano talc 1 wt%. This result suggests that the ductile 3D printable PLA/PBAT blend and the PLA/PBAT-nano talc composite products can be prepared, which shows potential for the commercialized scale.


2018 ◽  
Vol 237 ◽  
pp. 02014 ◽  
Author(s):  
Petr Vosynek ◽  
Tomas Navrat ◽  
Adela Krejbychova ◽  
David Palousek

Fused Deposition Modelling (FDM) is a fast-growing 3D printing technology. This technology expands rapidly even in households. Most users set print parameters only according to their own experience, regardless of the final mechanical properties. In order to predict the mechanical behaviour of the FDM-printed components, it is important to understand not only the properties of the printing material but also the effect of the printing process parameters on the mechanical properties. Components manufactured by FDM technology have an anisotropic structure, therefore the filling angle, fill shape, air gap, print orientation, and print temperature affect the resulting mechanical properties. This work deals with the change of mechanical properties depending on the setting of the filling angle, the shape of the filling, the orientation of the parts during printing, the influence of the material and pigment manufacturer.


2018 ◽  
Vol 157 ◽  
pp. 06001
Author(s):  
Juraj Beniak ◽  
Peter Križan ◽  
Miloš Matúš ◽  
Michal Šajgalík

In the present time there are many different plastic materials and composite materials suitable for 3D printing by deposition of semi-melted material. The proper selection of correct material with suitable material properties is dependent on the situation how the produced 3D model should be used. If we need to take into account just the visual look of used material or also the mechanical properties as strength is important for loaded models for final use. The aim of this paper is to publish outputs of experimental testing for 3D models from selected materials with regards to mechanical properties of produced testing parts. Produced 3D models are from PLA biodegradable thermoplastic. Models are prepared on Fused Deposition Modelling (FDM) 3D printer. Testing is based on prepared full factors experiment with four factors on its two levels. Measured values are Tensile strength of PLA testing 3D models. In the same time there are gathered information regarding the 3D printing process and compared to measured tensile strength values for each sent of testing parts. All the measured data are statistically evaluated also by Analysis of Variance (ANOVA method).


2020 ◽  
Vol 15 ◽  
pp. 155892502092853
Author(s):  
Nonsikelelo Sheron Mpofu ◽  
Josphat Igadwa Mwasiagi ◽  
Londiwe Cynthia Nkiwane ◽  
David Njuguna Githinji

Textile materials have been combined with polymers using 3D printing technology, thus producing structures with novel properties. The aim of this study was to use statistical methods to determine the effect of 3D printing machine parameters on the mechanical properties of cotton fabrics combined with polylactic acid. Polylactic acid was printed on a cotton fabric using an Athena Fused Deposition Modelling 3D printer. The effect of extrusion temperature, printing speed, fill density and model height on adhesion force before and after washing was investigated. A study of the tensile strength was also undertaken using a central composite rotatable design and regression analysis. The experimental data were used to develop regression models to predict the properties of the cotton/ polylactic acid structures. The model for adhesion force before washing yielded a coefficient of determination (R2) value of 0.75 and an optimum adhesion force of 50.06 N/cm. The model for adhesion force had an R2 value of 0.84 and an optimum adhesion force of 42.91 N/cm and showed that adhesion force reduced after washing. Adhesion forces before and after washing were both positively correlated to extrusion temperature. However, they reduced with an increase in printing speed and model height. A positive correlation exists between tensile strength and temperature, while a negative correlation exists between tensile strength and printing speed and model height. From the results of this study, it was concluded that 3D printing parameters have an effect on the properties of the structures.


Sign in / Sign up

Export Citation Format

Share Document