scholarly journals The Effect of Annealing Temperature on Structural and Solid State Properties of Aluminium Zinc Oxide (AlZnO) Deposited by Chemical Bath technique

In this work, we studied the effect of annealing temperature on the structural and solid state properties of AlZnO thin films using Chemical bath deposition technique. The thin films grown was annealed at various temperatures of 100oC, 150oC to 200oC The morphological and structural properties were studied using XRD and SEM, while the optical properties were studied using UVVIS Spectroscopy from where the bad gap, dielectric constant, refractive index, extinction coefficient and optical conductivity were deduced from the theoretical equations.From the result, it is observed that there is effect of annealing temperature on these properties such that the grain size and x-ray characteristics depicted different characteristics at these various temperatures.

2011 ◽  
Vol 8 (2) ◽  
pp. 561-565
Author(s):  
Baghdad Science Journal

Cr2O3 thin films have been prepared by spray pyrolysis on a glass substrate. Absorbance and transmittance spectra were recorded in the wavelength range (300-900) nm before and after annealing. The effects of annealing temperature on absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constant and optical conductivity were expected. It was found that all these parameters increase as the annealing temperature increased to 550°C.


Quimica Hoy ◽  
2011 ◽  
Vol 2 (1) ◽  
pp. 4
Author(s):  
Sarah Messina ◽  
Paz Hernández ◽  
Yolanda Peña

In this paper we present a method to produce polycrystalline CuSbS2 thin ?lms through a solid-state reaction at 350 ºC and 400 ºC involving thin ?lm multilayer of Sb2S3 -CuS or Cu2-xSe by chemical bath deposition technique. The formation of the ternary compound was confirmed by X-ray di?raction (XRD). A direct optical band gap of approx. 1.57 eV anda p-type electrical conductivity of 10-3 (Ω•cm)-1 were measured. These optoelectronic characteristics show perspective for the use of CuSbS, as a suitable absorber material in photovoltaic applications.


2020 ◽  
Vol 27 (08) ◽  
pp. 1950196
Author(s):  
SHUFENG LI ◽  
LI WANG ◽  
XUEQIONG SU ◽  
YONG PANG ◽  
DONGWEN GAO ◽  
...  

Amorphous and crystalline Zn[Formula: see text]CoxS ([Formula: see text], 0.3, 0.5) thin films were grown on sapphire (Al2O3) substrates by pulsed laser deposition at substrate temperature of 25∘C and 800∘C, respectively. The X-ray diffraction results show that the crystalline film has a cubic zinc blende structure and the crystalline quality decreased with increasing Co-doping concentration. The X-ray diffraction and X-ray photoelectron spectroscopy spectra reveal that the samples reached an overdoping state at Co-doping concentration of [Formula: see text]. The absorbance of films increases and the absorption edge shifts to longer wave length direction with increasing Co-doping concentration. The redshift of the band gap energy depends on the Co composition associating with the Urbach energy. Furthermore, the refractive index and dielectric constant increase with increasing Co-doping concentration. The dispersion parameters, such as dispersion energy ([Formula: see text]), oscillator energy ([Formula: see text]), static refractive index ([Formula: see text]), static dielectric constant ([Formula: see text]), interband transition strength moments ([Formula: see text] and [Formula: see text]), oscillator strength [Formula: see text] and oscillator wavelength [Formula: see text], have been analyzed by Wemple–DiDomenico single oscillator model. All these parameters were found to be dependent upon the Co-doping concentration in the Zn[Formula: see text]CoxS thin films.


2012 ◽  
Vol 252 ◽  
pp. 211-215
Author(s):  
Xiao Hua Sun ◽  
Shuang Hou ◽  
Zhi Meng Luo ◽  
Cai Hua Huang ◽  
Zong Zhi Hu

Bismuth zinc niobate titanium (Bi1.5Zn0.5 Nb0.5Ti1.5O7) (BZNT) thin films were deposited on PtTiSiO2Si substrates by radio frequency (rf) magnetron sputtering. The microstructure, surface morphology, stress, dielectric and tunable properties of thin films were investigated as a function of initial annealing temperature. It’s found that high initial annealing temperature increases the grain size, dielectric constant and tunability of BZNT films simultaneously and decreases the tensile stress in films. The BZNT thin film annealed from 500 °C to 700 °C shows the highest FOM value of 45.67 with the smallest dielectric loss and upper tunability.


2018 ◽  
Vol 31 (1) ◽  
pp. 37 ◽  
Author(s):  
Iman Hameed Khudayer ◽  
Bushra Hashem Hussein Ali ◽  
Mohammed Hamid Mustafa ◽  
Ayser Jumah Ibrahim

  The Silver1Indium1Selenide (AgInSe2) (AIS) thin1films of (3001±20) nm thickness  have been1prepared2from the compound alloys2using thermal evaporation2 technique onto the glass2substrate at room temperature, with a deposition rate2(3±0.1) nm2sec-1. The2structural, optical and electrical3properties have been studied3at different annealing3temperatures (Ta=450, 550 and 650) K. The amount3or (concentration) of the elements3(Ag, In, Se) in the  prepared alloy3was verified using  an energy dispersive3x-ray spectrometer (EDS)3technology. X-ray diffraction3analysis shows that AIS alloy  prepared as (powder) and the thin films3are polycrystalline  of tetragonal3structure with preferential orientation3(112). The crystalline3size increases  as a function3of annealing temperature. The atomic force3microscope (AFM) technique  was used to examine3the  topography  and  estimate3the surface roughness, also the  average grain3size of the films. The results show3that the grain size increases3with annealing3temperature.   The optical4band gap of the films lies4in the range 1.6-1.9 eV. The films4appear to be4n-type indicating that the electrons4as a dominant charge4carrier. The electrical conductivity4increases  with a corresponding4increase in annealing4temperature.  


2010 ◽  
Vol 93-94 ◽  
pp. 251-254 ◽  
Author(s):  
Pasinee Siriprapa ◽  
Anucha Watcharapasorn ◽  
Sukanda Jiansirisomboon

Bi4-xLaxTi3O12 (where x = 0, 0.25, 0.50, 0.75 and 1) powders and ceramics were prepared using conventional solid state reaction and sintering procedures. The calcination was carried out at 750 °C for 4 h and sintering was done at 1150 °C for 4 h. The density of all ceramics was found to be comparable regardless of La concentration. X-ray diffraction analysis showed that preferred orientation of ceramic grains was reduced with addition of La ions. This reduced preferred orientation was accompanied by a decrease in grain size. The temperature dependence of dielectric constant showed a decrease in Tc with increasing La concentration.


2018 ◽  
Vol 16 (37) ◽  
pp. 178-189
Author(s):  
Mahdi Hasan Suhail

In the present work, pulsed laser deposition (PLD) technique was applied to a pellet of Chromium Oxide (99.999% pure) with 2.5 cm diameter and 3 mm thickness at a pressure of 5 Tons using a Hydraulic piston. The films were deposited using Nd: YAG laser λ= (4664) nm at 600 mJ and 400 number of shot on a glass substrate, The thickness of the film was (107 nm). Structural and morphological analysis showed that the films started to crystallize at annealing temperature greater than 400 oC. Absorbance and transmittance spectra were recorded in the wavelength range (300-4400) nm before and after annealing. The effects of annealing temperature on absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constant were also study. It was found that all these parameters decrease as the annealing temperature increased to 500 °C, while the energy gap after annealing increase from 3.4 eV to 3.85 eV.


2004 ◽  
Vol 11 (06) ◽  
pp. 503-507 ◽  
Author(s):  
CHANGHONG YANG ◽  
ZHUO WANG ◽  
DONGYING PAN ◽  
JIANRU HAN ◽  
QINGXIA LI ◽  
...  

Neodymium-doped Bi 4 Ti 3 O 12 ( Bi 3.15 Nd 0.85 Ti 3 O 12) thin films have been synthesized by metalorganic solution decomposition and deposited on SiO 2/ p - Si (111) substrate by spin coating. The structural characteristic and crystallization of the films were examined by X-ray diffraction and atomic force microscope. The insulating property, dielectric constant and dissipation loss were found to be dependent on the annealing temperature. Nonhysteretic C – V curves at various frequencies were also collected. The films in the ON and OFF states were relatively stable.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
A. B. C. Ekwealor ◽  
S. U. Offiah ◽  
S. C. Ezugwu ◽  
F. I. Ezema

The effects of thermal treatment on the optical and structural properties of cobalt oxide CoxOy thin films synthesized in the pores of PVP by chemical bath deposition technique were investigated. Films deposited were crystalline. The optical properties of the films were got from absorbance, transmittance reflectance, refractive index, absorption coefficient, and extinction coefficient measurements. The synthesized CoxOy films turned out to be cobalt oxyhydroxide , CoO(OH), nanocrystals. The crystals obtained were of size 41.84 nm; however, as annealing temperature increased, the size decreased to 16.28 nm. The absorption coefficient, refractive index, and extinction coefficient were found to increase with increase in annealing temperature though not sequentially. For the same energy ranges of the incident photons, the absorption coefficient and refractive index ranged from 0.2 to 1.8 and from 1.4 to 2.3, respectively. The energy band-gap of the films ranged from 1.96 eV to 2.22 eV.


Author(s):  
F. Ma ◽  
S. Vivekanand ◽  
K. Barmak ◽  
C. Michaelsen

Solid state reactions in sputter-deposited Nb/Al multilayer thin films have been studied by transmission and analytical electron microscopy (TEM/AEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The Nb/Al multilayer thin films for TEM studies were sputter-deposited on (1102)sapphire substrates. The periodicity of the films is in the range 10-500 nm. The overall composition of the films are 1/3, 2/1, and 3/1 Nb/Al, corresponding to the stoichiometric composition of the three intermetallic phases in this system.Figure 1 is a TEM micrograph of an as-deposited film with periodicity A = dA1 + dNb = 72 nm, where d's are layer thicknesses. The polycrystalline nature of the Al and Nb layers with their columnar grain structure is evident in the figure. Both Nb and Al layers exhibit crystallographic texture, with the electron diffraction pattern for this film showing stronger diffraction spots in the direction normal to the multilayer. The X-ray diffraction patterns of all films are dominated by the Al(l 11) and Nb(l 10) peaks and show a merging of these two peaks with decreasing periodicity.


Sign in / Sign up

Export Citation Format

Share Document