scholarly journals Recycle of Zincates and Aluminum to Fed Zn-Air Fuel Cells

2020 ◽  
Vol 2 (2) ◽  
pp. 42-43

It is well known that the Zn-air battery dept of discharge is mainly governed by the electrochemistry of zinc anode in concentrated alkaline solutions leading to undesired precipitation of insulating zinc oxide at the electrode surface due to progressive increase in zincate concentration. Among the different approaches adopted to overcome this problem, mechanically and electrically rechargeable as well as refuelable systems have been deeply studied for automotive and stationary applications. In a refuelable Zn-air battery, the alkaline aqueous electrolyte is pumped into the cell, either carrying Zn electroactive fuel or flowing through a packed bed of Zn particles. In a previous paper, we adopted a mechanically refuelable tapered-end flow Zn-air fuel cell with Zn micro-spheres, and we studied the effect of electrolyte aging on the behavior of the Zn anode during battery discharge. The results have shown that the cell potential decrease in the battery discharge curve is mainly due to the anodic overpotential increase, as evidenced by means of EIS (Electrochemical Impedance Spectroscopy) measurements. Given that this effect can be attributed to the physicochemical modifications induced by the Zn passivation occurring at higher zincates concentration, the performance of the battery system can be notably improved by a relevant regeneration of spent alkaline zincate bath. Here, we propose a novel method to recover zinc from alkaline zincate baths by using aluminum electrodes. Aluminum metal and zincate ions give place to a single-displacement reaction producing a layer of zinc on the Al surface. The deposits of zinc metal on aluminum foils have been studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and the electrochemical process has been followed by open circuit measurements in order to put the basis of future developments.

2020 ◽  
Vol 62 (8) ◽  
pp. 803-808
Author(s):  
Wei Yan

Abstract Applied mechanical stress could accelerate the chemical or electrochemical process of metal corrosion in weak acid solution. Series of experimental tests were conducted in this research. The results show that there is no obvious correlation between OCP (open circuit potential) values and applied stresses. However, The LPR (linear polarization resistance)corrosion rate increased intensively under the applied stress of 400 MPa. Correspondingly, the EIS (electrochemical impedance spectroscopy) Nyquist diagrams show that all of the plots contain a semicircle over the whole frequency range and the semicircle size decreased with increasing applied stress. The real-time corrosion current square waves triggered by the mechanical stress were successfully monitored by using the potentiostatic method in CO2 saturated brine under 200 mv (above OCP), flow and lower pH condition. This result is significant for many research fields, such as petrochemistry, aerospace and nuclear industries, which suffer weak acid corrosive environment.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1447 ◽  
Author(s):  
Petros Katsoufis ◽  
Maria Katsaiti ◽  
Christos Mourelas ◽  
Tatiana Santos Andrade ◽  
Vassilios Dracopoulos ◽  
...  

A thin film aluminum-air battery has been constructed using a commercial grade Al-6061 plate as anode electrode, an air-breathing carbon cloth carrying an electrocatalyst as cathode electrode, and a thin porous paper soaked with aqueous KOH as electrolyte. This type of battery demonstrates a promising behavior under ambient conditions of 20 °C temperature and around 40% humidity. It presents good electric characteristics when plain nanoparticulate carbon (carbon black) is used as electrocatalyst but it is highly improved when MnO2 particles are mixed with carbon black. Thus, the open-circuit voltage was 1.35 V, the short-circuit current density 50 mA cm−2, and the maximum power density 20 mW cm−2 in the absence of MnO2 and increased to 1.45 V, 60 mA cm−2, and 28 mW cm−2, respectively, in the presence of MnO2. The corresponding maximum energy yield during battery discharge was 4.9 mWh cm−2 in the absence of MnO2 and increased to 5.5 mWh cm−2 in the presence of MnO2. In the second case, battery discharge lasted longer under the same discharge conditions. The superiority of the MnO2-containing electrocatalyst is justified by electrode electrochemical characterization data demonstrating reduction reactions at higher potential and charge transfer with much smaller resistance.


TAPPI Journal ◽  
2010 ◽  
Vol 9 (7) ◽  
pp. 35-41
Author(s):  
OUTI A. HYÖKYVIRTA ◽  
TOM E. GUSTAFSSON

This investigation evaluated the applicability of a molybdenum sulfide reference electrode (MSRE) as an internal reference electrode for use in alkaline sulfide solutions over a range of pulp digester liquors at 170°C. The electrode remained stable during the exposure period of two weeks. The experimentally determined half cell potential of the MSRE is E = -0.91 VSHE. The surface of the MSRE was examined by scanning electron microscope (SEM) and electron spectroscopy for chemical analysis (ESCA) to verify the chemical composition of the thin surface film. Based on ESCA studies, the surface film contained molybdenum disulfide and sodium disulfide. During storage of the specimens, sulfide was partly oxidized to sodium sulfite in air. Next to the metallic molybdenum, a mixed molybdenum disulfide and molybdenum hydroxide layer was detected.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Veton Haziri ◽  
Tu Pham Tran Nha ◽  
Avni Berisha ◽  
Jean-François Boily

AbstractGas bubbles grown on solids are more than simple vehicles for gas transport. They are charged particles with surfaces populated with exchangeable ions. We here unveil a gateway for alkali metal ion transport between oxygen bubbles and semi-conducting (iron oxide) and conducting (gold) surfaces. This gateway was identified by electrochemical impedance spectroscopy using an ultramicroelectrode in direct contact with bubbles pinned onto these solid surfaces. We show that this gateway is naturally present at open circuit potentials, and that negative electric potentials applied through the solid enhance ion transport. In contrast, positive potentials or contact with an insulator (polytetrafluoroethylene) attenuates transport. We propose that this gateway is generated by overlapping electric double layers of bubbles and surfaces of contrasting (electro)chemical potentials. Knowledge of this ion transfer phenomenon is essential for understanding electric shielding and reaction overpotential caused by bubbles on catalysts. This has especially important ramifications for predicting processes including mineral flotation, microfluidics, pore water geochemistry, and fuel cell technology.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 744
Author(s):  
Ameeq Farooq ◽  
Umer Masood Chaudry ◽  
Ahsan Saleem ◽  
Kashif Mairaj Deen ◽  
Kotiba Hamad ◽  
...  

To protect steel structures, zinc coatings are mostly used as a sacrificial barrier. This research aims to estimate the dissolution tendency of the electroplated and zinc-rich cold galvanized (ZRCG) coatings of a controlled thickness (35 ± 1 μm) applied via brush and dip coating methods on the mild steel. To assess the corrosion behavior of these coated samples in 3.5% NaCl and 10% NaCl containing soil solutions, open circuit potential (OCP), cyclic polarization (CP), and electrochemical impedance spectroscopy (EIS) tests were performed. The more negative OCP and appreciably large corrosion rate of the electroplated and ZRCG coated samples in 3.5% NaCl solution highlighted the preferential dissolution of Zn coatings. However, in saline soil solution, the relatively positive OCP (>−850 mV vs. Cu/CuSO4) and lower corrosion rate of the electroplated and ZRCG coatings compared to the uncoated steel sample indicated their incapacity to protect the steel substrate. The CP scans of the zinc electroplated samples showed a positive hysteresis loop after 24 h of exposure in 3.5% NaCl and saline soil solutions attributing to the localized dissolution of the coating. Similarly, the appreciable decrease in the charge transfer resistance of the electroplated samples after 24 h of exposure corresponded to their accelerated dissolution. Compared to the localized dissolution of the electroplated and brush-coated samples, the dip-coated ZRCG samples exhibited uniform dissolution during the extended exposure (500 h) salt spray test.


2007 ◽  
Vol 546-549 ◽  
pp. 571-574
Author(s):  
Xing Wu Guo ◽  
Jian Wei Chang ◽  
Shang Ming He ◽  
Peng Huai Fu ◽  
Wen Jiang Ding

The corrosion behavior of GW63 (Mg-6wt.%Gd-3wt.%Y-0.4wt.%Zr) alloys in 5% NaCl aqueous solution has been investigated by PARSTAT 2273 instrument. The Open Circuit Potential (ECORR) vs. time curve, cyclic polarization (Pitting Scans) curve and Electrochemical Impedance Spectroscopy (EIS) was measured for the GW63 alloys in as-cast and T6 heat treatment conditions. The EIS results indicated that the tendency of impedance variation for as-cast condition was monotonic decreasing, however, the tendency of variation for T6 condition was not completely monotonic but the total tendency was decreasing. The values of impedance of GW63 alloy at 0.1 Hz are about 103 ohm-cm2 for as-cast and T6 condition.


Coatings ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 454 ◽  
Author(s):  
Arman Dastpak ◽  
Kirsi Yliniemi ◽  
Mariana de Oliveira Monteiro ◽  
Sarah Höhn ◽  
Sannakaisa Virtanen ◽  
...  

In this study, a waste of biorefinery—lignin—is investigated as an anticorrosion coating on stainless steel. Corrosion behavior of two lignin types (hardwood beech and softwood spruce) was studied by electrochemical measurements (linear sweep voltammetry, open circuit potential, potentiostatic polarization, cyclic potentiodynamic polarization, and electrochemical impedance measurements) during exposure to simulated body fluid (SBF) or phosphate buffer (PBS). Results from linear sweep voltammetry of lignin-coated samples, in particular, demonstrated a reduction in corrosion current density between 1 and 3 orders of magnitude cf. blank stainless steel. Furthermore, results from cross cut adhesion tests on lignin-coated samples demonstrated that the best possible adhesion (grade 0) of ISO 2409 standard was achieved for the investigated novel coatings. Such findings suggest that lignin materials could transform the field of organic coatings towards more sustainable alternatives by replacing non-renewable polymer coatings.


CORROSION ◽  
10.5006/2674 ◽  
2018 ◽  
Vol 74 (9) ◽  
pp. 1011-1022 ◽  
Author(s):  
Megan Mahrokh Dorri ◽  
Stéphane Turgeon ◽  
Maxime Cloutier ◽  
Pascale Chevallier ◽  
Diego Mantovani

Localized corrosion constitutes a major concern in medical devices made of stainless steel. The conventional approach to circumvent such a problem is to convert the surface polycrystalline microstructure of the native oxide layer to an amorphous oxide layer, a few micrometers thick. This process cannot, however, be used for devices such as stents that undergo plastic deformation during their implantation, especially those used in vascular surgery for the treatment of cardiac, neurological, and peripheral vessels. This work explores the feasibility of producing a nano-thick plastic-deformation resistant amorphous oxide layer by plasma-based surface modifications. By varying the plasma process parameters, oxide layers with different features were produced and their properties were investigated before and after clinically-relevant plastic deformation. These properties and the related corrosion mechanisms were mainly evaluated using the electrochemical methods of open-circuit potential, cyclic potentiodynamic polarization, and electrochemical impedance spectroscopy. Results showed that, under optimal conditions, the resistance to corrosion and to the permeation of ions in a phosphate buffered saline, even after deformation, was significantly enhanced.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2177 ◽  
Author(s):  
Andrey Gnedenkov ◽  
Sergey Sinebryukhov ◽  
Dmitry Mashtalyar ◽  
Igor Vyaliy ◽  
Vladimir Egorkin ◽  
...  

The high electrochemical activity of the aircraft 1579 aluminium alloy with a welded joint and the necessity of the coating formation to protect this material against corrosion as well as to increase the stability of the weld interface in the corrosive medium has been previously established. In this work, two suggested methods of protective coating formation based on plasma electrolytic oxidation (PEO) in tartrate-fluoride electrolyte significantly increased the protective properties of the welded joint area of the 1579 Al alloy. The electrochemical properties of the formed surface layers have been investigated using SVET (scanning vibrating electrode technique) and SIET (scanning ion-selective electrode technique), EIS (electrochemical impedance spectroscopy), OCP (open circuit potential), and PDP (potentiodynamic polarization) in 0.5 M NaCl. The less expressed character of the local electrochemical processes on the welded 1579 Al alloy with the composite coating in comparison with the base PEO-layer has been established. Polymer-containing coatings obtained using superdispersed polytetrafluoroethylene (SPTFE) treatment are characterized by the best possible protective properties and prevent the material from corrosion destruction. Single SPTFE treatment enables one to increase PEO-layer protection by 5.5 times. The results of this study indicate that SVET and SIET are promising to characterize and to compare corrosion behaviour of coated and uncoated samples with a welded joint in chloride-containing media.


Sign in / Sign up

Export Citation Format

Share Document