scholarly journals Choosing the flow part geometric shape of the dredge pumps for viscous fluids

2021 ◽  
Vol 15 (4) ◽  
pp. 75-83
Author(s):  
Guldana Akanova ◽  
Laila Sagatova ◽  
Lazizjon Atakulov ◽  
Umid Kayumov ◽  
Muhammad Istamov

Purpose. Search for the possibility of increasing the efficiency of dredge pumps for viscous fluids by determining the rational values of the blade-outlet inclination angles in the pump impellers. Methods. During the research, the following is used: theoretical studies of the structure of the viscous fluids flowing through the flow part of dredge pumps; the method of three-dimensional software-simulation modeling of hydrodynamic processes using the Ansys software package; the methods of rational experiment planning for selecting the values of the number of points in the computational grid when optimizing the geometric parameters of the dredge pump impellers; methods of mathematical statistics and correlation analysis. Findings. It has been proven that the main reason for the failure of the flow part components in the dredge pumps is the manifestation of the influence of cavitation processes, which can be eliminated by changing the blade-outlet inclination angles in the pump impellers. A software-simulation complex for the automated design of the flow parts in the dredge pumps has been developed based on the use of optimization algorithms and computational fluid dynamics methods, which makes it possible to design dredge pumps with optimal characteristics that ensure their efficient operation with maximum efficiency values. It has been determined that one of the main factors influencing the head developed by dredge pumps and the efficiency value is the blade-outlet inclination angle in the pump impellers. Originality. Scientific novelty is in the scientific substantiation and development of a simulation-mathematical method for calculating the geometric parameters of the flow part in dredge pumps for viscous fluids at the design stage. Practical implications. The developed method for determining the rational blade-outlet inclination angles of the impellers in the dredge pumps for viscous fluids can be recommended to scientific-research and industrial organizations for use in the improvement, design and operation of the dredge pumps.

Author(s):  
O. Panevnyk

The method of choosing geometric parameters of the well hole pump which ensures its operation in the mode of maximum efficiency is proposed. According to the algorithm developed, the ratio of the diameters of the working nozzle, the mixing chamber and the diffuser of the jet pump, as well as the distance between the nozzle and the speed equalization chamber and the axial dimensions of the flow part elements are regulated. During the process of establishing the required dimensions of the elements of the ejection system, the nature of the free working jet into the mixing chamber of the jet pump is taken into account, which determines the shape and structure of the estimated ratios governing the axial distance between the working nozzle and the resuscitation chamber of the mixing streams. The relationship between the mixing chamber diameters and the working nozzle and the amount of the jet pump coefficient of ejection which ensures its operation with the maximum possible values of the ejection system efficiency is shown. The analytical nature of the establishment of hydraulic interconnections among the elements of the ejection system is complemented by the experience of the practical use of deep jet pumps in the implementation of certain technological processes of construction, operation and repair of oil wells.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 111
Author(s):  
Piotr Kopeć ◽  
Beata Niezgoda-Żelasko

The results of optimisation calculations presented in the article are related to longitudinally finned tubes of a heat pump evaporator operating under natural wind-induced flow of outdoor air conditions. The finned surface is characterised by an unusual, wavy fin shape. The article presents the methodology applied to seeking optimal geometric parameters of the finned tube in which thermal calculations were performed by modelling a mixed convection process on the finned surface using the finite volume method. In the case of maximising the heat flow with the minimum mass of the fins, the optimal solution was dominated by the minimum mass of the fins and thus geometric parameters correspond to the number of fins n = 6, fin height h = 0.065 and fin thickness s = 0.0015 m. Optimisation calculations made for maximum efficiency of the exchanger at constant mass indicated that the tube with ten fins (n = 10) with a height of h = 0.11 m and a thickness of s = 0.0018 m allowed maximum heat flow at the assumed mass of the fins in the exchanger tube model. The article proposes a simplified method of determining the optimal geometric parameters of the profile for any mass and maximum thermal efficiency.


Author(s):  
Shiyong Yang ◽  
Kikuo Nezu

Abstract An inverse finite element (FE) algorithm is proposed for sheet forming process simulation. With the inverse finite element analysis (FEA) program developed, a new method for concurrent engineering (CE) design for sheet metal forming product and process is proposed. After the product geometry is defined by using parametric patches, the input models for process simulation can be created without the necessity to define the initial blank and the geometry of tools, thus simplifying the design process and facilitating the designer to look into the formability and quality of the product being designed at preliminary design stage. With resort to a commercially available software, P3/PATRAN, arbitrarily three-dimensional product can be designed for manufacturability for sheet forming process by following the procedures given.


Author(s):  
Cagkan Yildiz ◽  
Tamer M. Wasfy ◽  
Hatem M. Wasfy ◽  
Jeanne M. Peters

In order to accurately predict the fatigue life and wear life of a belt, the various stresses that the belt is subjected to and the belt slip over the pulleys must be accurately calculated. In this paper, the effect of material and geometric parameters on the steady-state stresses (including normal, tangential and axial stresses), average belt slip for a flat belt, and belt-drive energy efficiency is studied using a high-fidelity flexible multibody dynamics model of the belt-drive. The belt’s rubber matrix is modeled using three-dimensional brick elements and the belt’s reinforcements are modeled using one dimensional truss elements. Friction between the belt and the pulleys is modeled using an asperity-based Coulomb friction model. The pulleys are modeled as cylindrical rigid bodies. The equations of motion are integrated using a time-accurate explicit solution procedure. The material parameters studied are the belt-pulley friction coefficient and the belt axial stiffness and damping. The geometric parameters studied are the belt thickness and the pulleys’ centers distance.


Author(s):  
Wei Li ◽  
Hua Ouyang ◽  
Zhao-hui Du

To give insight into the clocking effect and its influence on the wake transportation and its interaction, the unsteady three-dimensional flow through a 1.5-stage axial low pressure turbine is simulated numerically using a density-correction based, Reynolds-Averaged Navier-Stokes equations commercial CFD code. The 2nd stator clocking is applied over ten equal tangential positions. The results show that the harmonic blade number ratio is an important factor affecting the clocking effect. The clocking effect has a very small influence on the turbine efficiency in this investigation. The efficiency difference between the maximum and minimum configuration is nearly 0.1%. The maximum efficiency can be achieved when the 1st stator wake enters the 2nd stator passage near blade suction surface and its adjacent wake passes through the 2nd stator passage close to blade pressure surface. The minimum efficiency appears if the 1st stator wake impinges upon the leading edge of the 2nd stator and its adjacent wake of the 1st stator passed through the mid-channel in the 2nd stator.


Author(s):  
M. H. Shojaee Fard ◽  
M. B. Ehghaghi ◽  
F. A. Boyaghchi

On the test bed of centrifugal pump, the centrifugal pump performance has been investigated using water and viscous oil as Newtonian fluids, whose kinematic viscosities are 1 × 10−6, 43 × 10−6 and 62 × 10−6 m2/s, respectively. Also, the finite volume method is used to model the three dimensional viscous fluids for different operating conditions. For these numerical simulations the SIMPLEC algorithm is used for solving governing equations of incompressible viscous/turbulent flows through the pump. The κ-ε turbulence model is adopted to describe the turbulent flow process. These simulations have been made with a steady calculation and using the multiple reference frame (MRF) technique to take into account the impeller-volute interaction. Numerical results are compared with the experimental characteristic curve for each viscous fluid. The data obtained allow the analysis of the main phenomena existent in this pump, such as: head, efficiency, power and pressure field changes for different operating conditions. Also, the correction factors for oils are obtained from the experimental for part loading (PL), best efficiency point (BEP) and over loading (OL) and the results are compared with proposed factors by American Hydraulic Institute (HIS) and Soviet Union (USSR). The comparisons between the numerical and experimental results show a good agreement.


2021 ◽  
Vol 8 (1) ◽  
pp. F11-F18
Author(s):  
S.M. Vaneev ◽  
V.S. Martsynkovskyy ◽  
A. Kulikov ◽  
D.V. Miroshnichenko ◽  
Ya.І. Bilyk ◽  
...  

The creation of energy-saving turbogenerators is an essential component of the development of small energy systems. The gradual growth of interest in distributed electricity generation necessitates the constant improvement of these units. Moreover, they implement a more environmentally friendly generation method than when using microturbine units that use fuel to carry out the work process. Nowadays, turbogenerators are created based on different types of expansion machines, which have their advantages and disadvantages, given in this article. Compared to competitors, vortex expansion machines have good prospects and the necessary potential to expand their research and produce turbogenerators. An experimental vortex expansion machine with a peripheral-lateral channel and ability to change the geometric parameters of its flowing part was created to meet these needs. Experimental studies of the machine were performed on a special stand with air as a working fluid. As a result of the tests, the data were successfully obtained and processed. They are presented in the form of tables and graphical dependencies. The nature of the influence of thermodynamic parameters and geometric parameters of the flow part on the efficiency of the vortex expansion machine and turbogenerator based on it to further improve and create new turbogenerators is clarified.


Author(s):  
Jasim Mohmed Jasim Jasim ◽  
Iryna Shvedchykova ◽  
Igor Panasiuk ◽  
Julia Romanchenko ◽  
Inna Melkonova

An approach is proposed to carry out multivariate calculations of the magnetic field distribution in the working gaps of a plate polygradient matrix of an electromagnetic separator, based on a combination of the advantages of two- and three-dimensional computer modeling. Two-dimensional geometric models of computational domains are developed, which differ in the geometric dimensions of the plate matrix elements and working air gaps. To determine the vector magnetic potential at the boundaries of two-dimensional computational domains, a computational 3D experiment is carried out. For this, three variants of the electromagnetic separator are selected, which differ in the size of the working air gaps of the polygradient matrices. For them, three-dimensional computer models are built, the spatial distribution of the magnetic field in the working intervals of the electromagnetic separator matrix and the obtained numerical values of the vector magnetic potential at the boundaries of the computational domains are investigated. The determination of the values of the vector magnetic potential for all other models is carried out by interpolation. The obtained values of the vector magnetic potential are used to set the boundary conditions in a computational 2D experiment. An approach to the choice of a rational version of a lamellar matrix is substantiated, which provides a solution to the problem according to the criterion of the effective area of the working area. Using the method of simple enumeration, a variant of the structure of a polygradient matrix with rational geometric parameters is selected. The productivity of the electromagnetic separator with rational geometric parameters of the matrix increased by 3–5 % with the same efficiency of extraction of ferromagnetic inclusions in comparison with the basic version of the device


2012 ◽  
Vol 6 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Seiji Aoyagi ◽  
◽  
Masato Suzuki ◽  
Tomokazu Takahashi ◽  
Jun Fujioka ◽  
...  

Offline teaching based on high positioning accuracy of a robot arm is desired to take the place of manual teaching. In offline teaching, joint angles are calculated using a kinematic model of the robot arm. However, a nominal kinematic model does not consider the errors arising in manufacturing or assembly, not to mention the non-geometric errors arising in gear transmission, arm compliance, etc. Therefore, a method of precisely calibrating the parameters in a kinematic model is required. For this purpose, it is necessary to measure the three-dimensional (3-D) absolute position of the tip of a robot arm. In this paper, a laser tracking system is employed as the measurement apparatus. The geometric parameters in the robot kinematic model are calibrated by minimizing errors between the measured positions and the predicted ones based on the model. The residual errors caused by non-geometric parameters are further reduced by using neural networks, realizing high positioning accuracy of sub-millimeter order. To speed up the calibration process, a smaller number of measuring points is preferable. Optimal measuring points, which realize high positioning accuracy while remaining small in number, are selected using Genetic Algorithm (GA).


Author(s):  
Nono Suprayetno ◽  
Priyono Sutikno ◽  
Nathanael P. Tandian ◽  
Firman Hartono

This study aims to design an axial turbine rotor blade and predict the turbine performance at preliminary design stage. Quasi three dimensional method was applied to design including blade to blade flow analysis. The blade profile uses a NACA 0015 airfoil by varying the profile thickness from hub to tip. The profile is divided into eleven segments which has different parameters. The profile was analysed using blade to blade flow/cascade flow analysis called vortex panel method to obtain lift coefficient. The analysis of cascade flow was performed in potential flow and prediction of turbine perfomance is carried out involving common best practice to give drag effect on the blade. The design of the turbine was applied on three different rotors, which also have a different discharge, head, and design rotation. The outer diameter of turbine 1 is 0.65 m, while turbine 2 and turbine 3 have an outer diameter of 0,60 m. The calculation result show that the efficiency of turbines 1, 2, and 3 were 88,32%, 89,67%, and 89,04%, respectively.


Sign in / Sign up

Export Citation Format

Share Document