scholarly journals New methods for preventing crumbling and collapse of the borehole walls

Author(s):  
I.I Chudyk ◽  
Ya.M Femiak ◽  
M.I Orynchak ◽  
A.K Sudakov ◽  
A.I Riznychuk

Purpose. To increase the stability of the wellbore during its construction in unstable rocks. Methodology. To solve the set tasks, an integrated approach is used in the work, which includes critical analysis and generalization of scientific and technical achievements in combination with theoretical and experimental research. Findings. Factors influencing the stability of the borehole walls in conditions prone to rock slides and rock falls are analyzed. Expediency of using baths for strengthening the walls of wells in deposits of clay rocks, including clay shales, has been established and substantiated. A formulation of a fuel-bituminous bath has been proposed, the installation of which in a well for 78 hours makes it possible to increase the initial compressive strength of rocks, which will ensure the integrity of the borehole walls. It is recommended to use corrugated casing pipes to cover the sections of the wellbore where there is intensive crumbling and collapse of rocks. Originality. For the first time, the main factors of wall destruction have been established and a method has been developed to prevent the destruction of walls of directional wells composed of rocks prone to loss of stability under the action of drill string loads. Practical value. To combat the collapse of the walls of the well composed of rocks, prone to loss of stability, the authors suggested setting up fuel-bituminous baths in the range of complications. In case when the collapse of the walls of the well can not be prevented with a fuel-bitumen bath, it is proposed to overlap the area of collapse with the casing using advanced corrugated casing pipes with the injection of adhesive into the rock mass in the near-wellbore zone. The use of an adhesive material increases the contact area of the metal shell with the rock, which collapses increasing the stability of the borehole walls.

Author(s):  
Ming Wang ◽  
ZhaoLin Sun ◽  
Fangrong Ding ◽  
Haiping Wang ◽  
Ling Li ◽  
...  

AbstractFunctional elucidation of bovine Y-chromosome genes requires available genome editing technologies. Meanwhile, it has yet to be proven whether the bovine Sry gene is the main or single factor involved in the development of the male phenotype in bovine. Here, we efficiently knocked out four Y-linked genes (Sry, ZFY, DDX3Y, and EIF2S3Y) in bovine fetal fibroblasts (BFFs) with transcription activator-like effector nucleases (TALENs) individually. Furthermore, we used TALEN-mediated gene knockin at the Sry gene and generated a sex-reversal bovine by somatic cell nuclear transfer (SCNT). The resulting bovine had only one ovary and was sterile. We demonstrate, for the first time, that the Sry gene is an important sex-determining gene in bovine. Our method lays a solid foundation for detecting the biology of the bovine Y chromosome, as it may provide an alternative biological model system for the study of mammalian sex determination, and new methods for the practical application in agricultural, especially for sex predetermination.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yu Zheng ◽  
Xudong Luo ◽  
Jinlong Yang ◽  
Wenlong Huo ◽  
Chi Kang

A novel approach is used for fabricating steel slag foam ceramics based on the particle-stabilized foaming method. In this work, steel slag was used as the raw material and propyl gallate (PG) was used as the surface modifier. For the first time, steel slag ceramic foams were successfully fabricated based on particle-stabilized foams. The results show that the stability of the ceramic foams was closely related to the pH value and PG concentration. The porosity and compressive strength could be controlled by changing the solid loading of steel slag and sintering temperature. The porosity of steel slag foam ceramics ranged from 85.6% to 62.53%, and the compressive strength was from 1.74 MPa to 10.42 MPa. The thermal conductivity of steel slag foam ceramics was only 0.067 W (m·K)−1, which shows that it could be used as a thermal insulation material.


2003 ◽  
Vol 69 (7) ◽  
pp. 4012-4018 ◽  
Author(s):  
Ariel Maoz ◽  
Ralf Mayr ◽  
Siegfried Scherer

ABSTRACT The temporal stability and diversity of bacterial species composition as well as the antilisterial potential of two different, complex, and undefined microbial consortia from red-smear soft cheeses were investigated. Samples were collected twice, at 6-month intervals, from each of two food producers, and a total of 400 bacterial isolates were identified by Fourier-transform infrared spectroscopy and 16S ribosomal DNA sequence analysis. Coryneform bacteria represented the majority of the isolates, with certain species being predominant. In addition, Marinolactobacillus psychrotolerans, Halomonas venusta, Halomonas variabilis, Halomonas sp. (106 to 107 CFU per g of smear), and an unknown, gram-positive bacterium (107 to 108 CFU per g of smear) are described for the first time in such a consortium. The species composition of one consortium was quite stable over 6 months, but the other consortium revealed less diversity of coryneform species as well as less stability. While the first consortium had a stable, extraordinarily high antilisterial potential in situ, the antilisterial activity of the second consortium was lower and decreased with time. The cause for the antilisterial activity of the two consortia remained unknown but is not due to the secretion of soluble, inhibitory substances by the individual components of the consortium. Our data indicate that the stability over time and a potential antilisterial activity are individual characteristics of the ripening consortia which can be monitored and used for safe food production without artificial preservatives.


2013 ◽  
Vol 353-356 ◽  
pp. 436-439
Author(s):  
De Sen Kong ◽  
Yong Po Chen

In order to forecast the stability of deep roadway and optimize the parameters of bolts, the complex stress environment and the multivariate surrounding rocks characteristics of deep roadway were analyzed. Then the classification prediction method and the numerical simulation method were simultaneously used to analysis the stability of surrounding rocks. Furthermore, the supporting parameters of bolts were also designed optimally. It was shown that the characteristics of stress distribution, deformation and failure zone of surrounding rocks are not ideal. So it is necessary to optimize the supporting parameters of deep roadway. All these research findings will provide the theory basis for bolts of deep roadway and will ensure the optimization of bolts and the stability of deep roadway in the long run.


2014 ◽  
Vol 1044-1045 ◽  
pp. 1655-1659
Author(s):  
Gui Qing He ◽  
Xiao Yi Feng

With young teachers as the study object and with the aim to improve their in-class teaching ability, this paper conducts studies centering on the weaknesses of young teachers in science and engineering universities and colleges, i.e. their severe lack of teaching experiences and their mistaking scientific research capabilities for teaching ability. Then it comes upon new methods to improve the in-class teaching ability of young teachers, which can be summarized as education orientation and devotion. The research findings contain some innovative thoughts and are theoretically valuable for dissemination and practically feasible.


2017 ◽  
Vol 32 (8) ◽  
pp. 1108-1118 ◽  
Author(s):  
Dipankar Dutta ◽  
Daniel Thornton ◽  
Emily Bowen

Objectives: We investigated factors associated with Care Home (CH) discharge following stroke using routinely collected data in unselected patients and assessed the relevance of previous research findings to such patients seen in routine clinical practice. Design: Retrospective analysis of data from the Sentinel Stroke National Audit Programme using univariate analysis and logistic regression. Setting: A large acute and rehabilitation UK stroke unit with access to early supported discharge. Subjects: All patients with stroke treated from 1 January 2014 to 1 January 2017. Main measures: National Institutes of Health Stroke Scale (NIHSS) and modified Rankin Scale (mRS). Results: Of 2584 patients (median age 78 years, interquartile range (IQR) 69–86; 50.6% male; 86.7% infarcts; median admission NIHSS 4, IQR 2–9), 401 (15.5%) died in hospital and 203 patients (7.9%) were permanently discharged to CH for the first time. Most had pre-discharge mRS scores of 4/5. Factors (odds ratios; 95% confidence intervals) associated with CH discharge included age (1.07; 1.05–1.10), incontinence (11.5; 7.13–19.25), dysphagia (2.13; 1.39–3.29), severe weakness (1.93; 1.28–2.92), pneumonia (1.68; 1.13–2.50), urinary tract infection (UTI) (1.70; 1.04–2.75) and depression (1.65; 1.00–2.72). In a subgroup of all patients with a pre-discharge mRS of 4/5, age (1.04; 1.02–1.06), incontinence (4.87; 2.39–11.02), UTI (2.0; 1.09–3.71) and pneumonia (1.59; 1.02–2.50) were the only factors associated with CH discharge. Conclusion: Potentially modifiable variables like incontinence, UTI and pneumonia were associated with CH discharge, particularly in the severely disabled.


2021 ◽  
Author(s):  
Yakov Dzhalatyan ◽  
Mikhail Charupa ◽  
Aydar Galiev ◽  
Yevgeniy Karpekin ◽  
Sergey Egorov ◽  
...  

Abstract In the presented paper, the object of the study are carbonate rocks of the Riphean and clastic-carbonate rocks of Vendian-Cambrian ages, uncovered by the well drilled at Yurubcheno-Tokhomskoye field. These reservoirs are characterized by extremely low porosity (1-4%) and determining saturation nature and fluid contacts cannot be reliably solved by conventional wireline petrophysical logging. Solutions to these problems are provided by interval testing using wireline formation evaluation testing tool (WFT). However, to obtain quality results from WFT testing it is important to identify porous intervals first by using advanced wireline logging services which are sensitive to porosity and fractures. In order to select the optimal WFT toolstring combination and to prospective testing intervals, advanced petrophysical wireline logging suit ran first. Porous reservoirs were identified from density, neutron and nuclear magnetic resonance evaluation. Saturation evaluated through dielectric and induction-based resistivity logging. In fracture-vug type reservoir, the main inflow of formation fluid into the well is provided from fractures, so it was very important to allocate conductive fractures to plan test intervals for WFT accordingly. based on imagers evaluation, fractures and faults were visualized; using Stoneley's wave conductive fractures, not clogged with drilling mud solids were identified; borehole acoustic reflection survey was used to segregate large fractures that propagated in the reservoir; During WFT logging, a total of 23 intervals were tested, for 8 of which reservoir fluid inflow was achieved, in all others, mainly with low porosity or single non-conductive fracture, the inflow was not achieved or was insignificant. According to the results of WFT testing, the nature of saturation for clastic-carbonate sediments of Vendian age was determined. Inflow of formation fluid (oil and water) from Riphean fractured reservoirs was achieved from 6 intervals, with identified fractures according to described above advanced logging suit. In addition, pressure transient analysis was performed, to measure the formation pressure, define pressure gradient curves and assess the fluids contact level with high confidence, for the first time for this field.


2021 ◽  
pp. 50-57
Author(s):  
V. I. Matveev

The article summarizes the results of the MetrolExpo exhibition, which was held for the first time online. The event focused on instrumentation-demonstration and discussion of the possibilities of modern measuring equipment, analysis of new methods and technologies of accurate measurements that have appeared in recent years. The latest developments, devices and systems for conducting measurements, tests, technical diagnostics, analytical studies, production and functional control from the largest Russian and foreign manufacturers were demonstrated.


Author(s):  
Ruigui Pan ◽  
Huw G. Davies

Abstract Nonstationary response of a two-degrees-of-freedom system with quadratic coupling under a time varying modulated amplitude sinusoidal excitation is studied. The nonlinearly coupled pitch and roll ship model is based on Nayfeh, Mook and Marshall’s work for the case of stationary excitation. The ship model has a 2:1 internal resonance and is excited near the resonance of the pitch mode. The modulated excitation (F0 + F1 cos ωt) cosQt is used to model a narrow band sea-wave excitation. The response demonstrates a variety of bifurcations, loss of stability, and chaos phenomena that are not present in the stationary case. We consider here the periodically modulated response. Chaotic response of the system is discussed in a separate paper. Several approximate solutions, under both small and large modulating amplitudes F1, are obtained and compared with the exact one. The stability of an exact solution with one mode having zero amplitude is studied. Loss of stability in this case involves either a rapid transition from one of two stable (in the stationary sense) branches to another, or a period doubling bifurcation. From Floquet theory, various stability boundary diagrams are obtained in F1 and F0 parameter space which can be used to predict the various transition phenomena and the period-2 bifurcations. The study shows that both the modulation parameters F1 and ω (the modulating frequency) have great effect on the stability boundaries. Because of the modulation, the stable area is greatly expanded, and the stationary bifurcation point can be exceeded without loss of stability. Decreasing ω can make the stability boundary very complicated. For very small ω the response can make periodic transitions between the two (pseudo) stable solutions.


2021 ◽  
Author(s):  
Megan Payne ◽  
Olga Tsaponina ◽  
Gillian Caalim ◽  
Hayley Greenfield ◽  
Leanne Milton-Harris ◽  
...  

Wnt signalling is an evolutionary conserved signal transduction pathway heavily implicated in normal development and disease. The central mediator of this pathway, β-catenin, is frequently overexpressed, mislocalised and overactive in acute myeloid leukaemia (AML) where it mediates the establishment, maintenance and drug resistance of leukaemia stem cells. Critical to the stability, localisation and activity of β-catenin are the protein-protein interactions it forms, yet these are poorly defined in AML. We recently performed the first β-catenin interactome study in blood cells of any kind and identified a plethora of novel interacting partners. This study shows for the first time that β-catenin interacts with Wilms tumour protein (WT1), a protein frequently overexpressed and mutated in AML, in both myeloid cell lines and also primary AML samples. We demonstrate crosstalk between the signalling activity of these two proteins in myeloid cells, and show that modulation of either protein can affect expression of the other. Finally, we demonstrate that WT1 mutations frequently observed in AML can increase stabilise β-catenin and augment Wnt signalling output. This study has uncovered new context-dependent molecular interactions for β-catenin which could inform future therapeutic strategies to target this dysregulated molecule in AML.


Sign in / Sign up

Export Citation Format

Share Document