scholarly journals Antibiotic Sensitivity, ESBL production and Prevalence of blaSHV and blaOXA genes in Escherichia coli from Urinary Tract Infection

2016 ◽  
Vol 30 (1-2) ◽  
pp. 65-70
Author(s):  
Marufa Zerin Akhter ◽  
Md Molin Miah

Ninety five Escherichia coli isolates from diagnosed urinary tract infections were examined for antibiotic resistance, ESBL production and the presence of two ESBL producing genes blaSHV and blaOXA. It was observed that the prevalence of UTI was most in ages between 19 to 45 years. All the isolates were resistant against different antibiotics including the third generation cephalosporins. Resistance against ciprofloxacin, the frequently prescribed drug was 82%. Only meropenem and nitrofurantoin showed greater sensitivity towards the isolates showing 13 % and 33 % resistance respectively. The resistances were 90, 86, 82 , 79 , 78, 76, 75, 75, 74, 73, 72, 68, 33 and for amoxicillin, nalidixic acid, ciprofloxacin, cephalexin, ceftriaxone, cefixime, amoxiclav, ceftazidime, netilmicin, aztreonam, gentamicin, amikacin, nitrofurantoin and meropenem respectively. Thirtyone isolates were randomly selected for detection of ESBL Production by double disc diffusion synergy test. Twenty one isolates (67.74%) were positive in ESBL production. PCR experiments were carried out using the 21 ESBL positive E. coli isolates to examine the presence of two ESBL genes namely blaSHV and blaOXA. All (100%) of the 21 isolates showed the presence of blaOXA gene, whereas 8 (38%) isolates among the 21 showed the presence of blaSHV gene.Bangladesh J Microbiol, Volume 30, Number 1-2,June-Dec 2013, pp 65-70

2010 ◽  
Vol 5 (6) ◽  
pp. 827-830
Author(s):  
Georgi Slavchev ◽  
Nadya Markova

AbstractUropathogenic strains of E. coli isolated from urine of patients with urinary tract infections were tested for antibiotic sensitivity using bio-Merieux kits and ATB-UR 5 expression system. The virulence of strains was evaluated by serum bactericidal assay, macrophage “killing” and bacterial adhesive tests. Survival capability of strains was assessed under starvation in saline. The results showed that quinolone-resistant uropathogenic strains of E. coli exhibit significantly reduced adhesive potential but relatively high resistance to serum and macrophage bactericidity. In contrast to laboratory strains, the quinolone-resistant uropathogenic clinical isolate demonstrated increased viability during starvation in saline. Our study suggests that quinolone-resistant uropathogenic strains are highly adaptable clones of E. coli, which can exhibit compensatory viability potential under unfavorable conditions. The clinical occurrence of such phenotypes is likely to contribute to the survival, persistence and spread strategy of resistant bacteria.


2016 ◽  
Vol 21 (35) ◽  
Author(s):  
Sabine Bou-Antoun ◽  
John Davies ◽  
Rebecca Guy ◽  
Alan P Johnson ◽  
Elizabeth A Sheridan ◽  
...  

We determined the incidence, risk factors and antimicrobial susceptibility associated with Escherichia coli bacteraemia in England over a 24 month period. Case data were obtained from the national mandatory surveillance database, with susceptibility data linked from LabBase2, a voluntary national microbiology database. Between April 2012 and March 2014, 66,512 E. coli bacteraemia cases were reported. Disease incidence increased by 6% from 60.4 per 100,000 population in 2012–13 to 63.5 per 100,000 population in 2013–14 (p < 0.0001). Rates of E. coli bacteraemia varied with patient age and sex, with 70.5% (46,883/66,512) of cases seen in patients aged ≥ 65 years and 52.4% (33,969/64,846) of cases in females. The most common underlying cause of bacteraemia was infection of the genital/urinary tract (41.1%; 27,328/66,512), of which 98.4% (26,891/27,328) were urinary tract infections (UTIs). The majority of cases (76.1%; 50,617/66,512) had positive blood cultures before or within two days of admission and were classified as community onset cases, however 15.7% (10,468/66,512) occurred in patients who had been hospitalised for over a week. Non-susceptibility to ciprofloxacin, third-generation cephalosporins, piperacillin–tazobactam, gentamicin and carbapenems were 18.4% (8,439/45,829), 10.4% (4,256/40,734), 10.2% (4,694/46,186), 9.7% (4,770/49,114) and 0.2% (91/42,986), respectively. Antibiotic non-susceptibility was higher in hospital-onset cases than for those presenting from the community (e.g. ciprofloxacin non-susceptibility was 22.1% (2,234/10,105) for hospital-onset vs 17.4% (5,920/34,069) for community-onset cases). Interventions to reduce the incidence of E. coli bacteraemia will have to target the community setting and UTIs if substantial reductions are to be realised.


2020 ◽  
Vol 7 (1) ◽  
pp. 23-29
Author(s):  
Gunjal P. N. ◽  
Gunjal S. P.

Urinary tract infection (UTI), is defined as a disease caused by invasion of urinary tract by microorganisms. Majority of UTI cases are due to bacterial infection constitute about 95% of total UTI cases. About 80% of UTI cases are caused by E.coli producing extended spectrum ?-lactamase (ESBL) producing isolates. In recent years limitations in treating infections caused by multidrug resistant organisms has increased. This study aims to determine ESBL production of E. coli cases from a tertiary care hospital. Methodology: A total 358 midstream urine samples were collected by random sampling method during March 2015 to June 2018. Identification, antibiotic sensitivity testing, performed according to standard protocol following Clinical and Laboratory Standard Institute (CLSI) guidelines, 2013. Screening for ESBL producing E.coli isolates performed using ceftazidime further confirmation done by phenotypic disc diffusion test using combined disc method using ceftazidime (30µg) & ceftazidime/ clavulanic acid (30/10 µg) as per CLSI guidelines. Results: Total 358 specimens processed for urine culture. Gram negative bacilli isolated from 123(34.35 %), out of which 68 (55.28%) were E.coli, 19 (15.44%) K. pneumoniae, 15 (12.19%), Pseudomonas spp. 08 (6.50%), Citrobacter spp and Acinetobacter spp, 03 (2.43%), Proteus mirabilis, 01 (0.81%) Proteus vulgaris and Enterobacter respectively. Out of 68 isolates of E.coli, 65 (95.58%) were MDR, ESBL was detected in 31 (47.69%) out of these 65 isolates. Out of these 31 cases 19 (61.29%) were female and 12 (38.70%) were male cases. Conclusion: This study concludes 47.69% ESBL producing MDR E. coli were isolated from UTI cases with female predominance.


2021 ◽  
Vol 9 (1) ◽  
pp. 075-085
Author(s):  
Abdoulaye Makanéra ◽  
Talibi Camara ◽  
Amadou Sadjo Diallo ◽  
Rabouan Mohamed Chamassi ◽  
Mariam Condé ◽  
...  

Introduction: Escherichia coli (E. coli) is one of the main bacterial species associated with urinary tract infections. Nowadays, this bacterium is becoming more and more resistant to antibiotics. Objective: The aim of this study was to determine the antibiotic sensitivity profiles of all strains of E. coli isolated from urine during the period from September 1st, 2018 to March 13th, 2019 at the Biomedical Laboratory of the China-Guinea Friendship Hospital of Kipé in Conakry. Materiel and Methods: Cultures were done on different agar media. Bacterial identification, antibiograms and determination of minimum inhibitory concentrations (MIC) were performed on the Vitek 2 Compact 15 automated system. Results: A total of 66 strains of E. coli have been isolated from patients of both sexes. The sex ratio (M/F) was 0.43. The mean age of the patients was 50.83 years. The majority of strains were sensitive to imipenem (96.96%), amikacin (96.96%), ertapenem (94.73%), gentamicin (69.23%), tobramycin (60, 60%), cefoxitin (64.28%), cefotaxime (62.50%), piperacillin/tazobactam (77.4%), amoxicillin/clavulanic acid (50.00%) and nitrofurantoin (87%). In contrast, the majority of strains were resistant to ampicillin (81.81%), cefalotin (62.02%), ticarcillin (88.00%), nalidixic acid (82.75%), ciprofloxacin (56.06%), ofloxacin (56.00%) and combination of trimethoprim/sulfamethoxazole (83.60%), sometimes with high MICs. Conclusion: Our results show that urinary tract infections due to E. coli are more frequently observed in females than in males. Some of these strains studied exhibited multidrug resistance profiles to antibiotics. Among the classes of antibiotics tested, carbapenemes, nitrofurans, aminoglycosides, appear to be more active on E. coli uropathogenes in Guinea.


2020 ◽  
Vol 5 (2) ◽  
pp. 43-47
Author(s):  
Parisa Shahbazi ◽  
Mohammad Jahantigh ◽  
Saeed Salari ◽  
Salehe Danesh

Introduction: The production of β-lactamase in bacteria, especially in Escherichia coli as a prevalent opportunistic bacterium, has caused many problems in patient treatment. β-lactamases are encoded by extended-spectrum β-lactamase (ESBL) genes such as blaTEM and blaCTX-M. We aimed to assess the prevalence and antibiotic sensitivity of β-lactamases encoded by blaCTX-M and blaTEM in E. coli isolated from patients suffering from urinary tract infections (UTIs). Methods: Escherichia coli strains were isolated from the patients’ urine culture presented to medical diagnostic laboratories in Zabol, Iran. The agar disc-diffusion test was performed on Müller-Hinton agar to investigate the antibiotic resistance of these isolates using eight antimicrobial paper discs including gentamicin, tetracycline, co-trimoxazole, norfloxacin, cefuroxime, ampicillin, neomycin, and amoxicillin. A conventional polymerase chain reaction (PCR) was used to detect blaCTX-M and blaTEM. Results: The frequencies of resistance to cefuroxime, norfloxacin, co-trimoxazole, neomycin, amoxicillin, tetracycline, gentamicin, and ampicillin were found to be 45 (90%), 15 (30%), 33 (66%), 33 (66%), 44 (88%), 34 (68%), 4 (8%), and 50 (100%), respectively. Moreover, the prevalence of blaCTX-M was 25 (50%) while that of blaTEM was 16 (32%). Conclusion: Based on the results, gentamicin and norfloxacin can be recommended as effective antibacterials for treating UTI caused by E. coli in the study population. Moreover, the frequency of resistant genes including blaCTX-M and blaTEM was high in the isolated E. coli. Effective control systems including appropriate treatments for ESBL-producing strains are therefore required for humans and food animals.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Ziad Daoud ◽  
Claude Afif

The purpose of this study was to investigate the bacterial etiology of urinary tract infections in one of the busiest hospitals of Lebanon and to examine the epidemiologic and microbiologic properties of Escherichia coli isolated from urinary tract infections of Lebanese patients over a 10-year period. Methods. This retrospective study analyzed the data generated between 2000 and 2009 (10,013 Gram-positive and Gram-negative bacteria). Bacterial identification was based on standard culture and biochemical characteristics of isolates. Antimicrobial susceptibility was tested by the disk diffusion method, and ESBL production was detected by synergy with third-generation cephalosporins and amoxiclav. Results. E. coli was the most frequent isolate throughout the ten years (60.64% of the total isolates). It was followed by Klebsiella pneumoniae and Proteus sp., Pseudomonas aeruginosa, Enterococcus sp., and Streptococcus agalactiae. E. coli occurred more frequently in women (69.8%) than in men (61.4%). The lowest percentage of susceptibility of E. coli was manifested against piperacillin and ampicillin. An increase in the production of ESBL was observed (2.3% in 2000 to 16.8% in 2009). Conclusions. The etiology of urinary tract infections and their susceptibility profiles are important to be evaluated in countries like Lebanon where a severe misuse of antibiotics at all levels is observed.


2021 ◽  
Vol 9 (2) ◽  
pp. 310
Author(s):  
Masayuki Hashimoto ◽  
Yi-Fen Ma ◽  
Sin-Tian Wang ◽  
Chang-Shi Chen ◽  
Ching-Hao Teng

Uropathogenic Escherichia coli (UPEC) is a major bacterial pathogen that causes urinary tract infections (UTIs). The mouse is an available UTI model for studying the pathogenicity; however, Caenorhabditis elegans represents as an alternative surrogate host with the capacity for high-throughput analysis. Then, we established a simple assay for a UPEC infection model with C. elegans for large-scale screening. A total of 133 clinically isolated E. coli strains, which included UTI-associated and fecal isolates, were applied to demonstrate the simple pathogenicity assay. From the screening, several virulence factors (VFs) involved with iron acquisition (chuA, fyuA, and irp2) were significantly associated with high pathogenicity. We then evaluated whether the VFs in UPEC were involved in the pathogenicity. Mutants of E. coli UTI89 with defective iron acquisition systems were applied to a solid killing assay with C. elegans. As a result, the survival rate of C. elegans fed with the mutants significantly increased compared to when fed with the parent strain. The results demonstrated, the simple assay with C. elegans was useful as a UPEC infectious model. To our knowledge, this is the first report of the involvement of iron acquisition in the pathogenicity of UPEC in a C. elegans model.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1348
Author(s):  
Lívia Slobodníková ◽  
Barbora Markusková ◽  
Michal Kajsík ◽  
Michal Andrezál ◽  
Marek Straka ◽  
...  

Urinary tract infections (UTIs) are among the events that most frequently need medical intervention. Uropathogenic Escherichia coli are frequently their causative agents and the infections are sometimes complicated by the presence of polyresistant nosocomial strains. Phage therapy is a tool that has good prospects for the treatment of these infections. In the present study, we isolated and characterized two bacteriophages with broad host specificity against a panel of local uropathogenic E. coli strains and combined them into a phage cocktail. According to genome sequencing, these phages were closely related and belonged to the Tequatrovirus genus. The newly isolated phages showed very good activity on a panel of local clinical E. coli strains from urinary tract infections. In the form of a two-phage cocktail, they were active on E. coli strains belonging to phylogroups B2 and D, with relatively lower activity in B1 and no response in phylogroup A. Our study is a preliminary step toward the establishment of a national phage bank containing local, well-characterized phages with therapeutic potential for patients in Slovakia.


mBio ◽  
2014 ◽  
Vol 5 (2) ◽  
Author(s):  
Dana Willner ◽  
Serene Low ◽  
Jason A. Steen ◽  
Narelle George ◽  
Graeme R. Nimmo ◽  
...  

ABSTRACTUrinary tract infections (UTIs) are one of the most commonly acquired bacterial infections in humans, and uropathogenicEscherichia colistrains are responsible for over 80% of all cases. The standard method for identification of uropathogens in clinical laboratories is cultivation, primarily using solid growth media under aerobic conditions, coupled with morphological and biochemical tests of typically a single isolate colony. However, these methods detect only culturable microorganisms, and characterization is phenotypic in nature. Here, we explored the genotypic identity of communities in acute uncomplicated UTIs from 50 individuals by using culture-independent amplicon pyrosequencing and whole-genome and metagenomic shotgun sequencing. Genus-level characterization of the UTI communities was achieved using the 16S rRNA gene (V8 region). Overall UTI community richness was very low in comparison to other human microbiomes. We strain-typedEscherichia-dominated UTIs using amplicon pyrosequencing of the fimbrial adhesin gene,fimH. There were nine highly abundantfimHtypes, and each UTI sample was dominated by a single type. Molecular analysis of the corresponding clinical isolates revealed that in the majority of cases the isolate was representative of the dominant taxon in the community at both the genus and the strain level. Shotgun sequencing was performed on a subset of eightE. coliurine UTI and isolate pairs. The majority of UTI microbial metagenomic sequences mapped to isolate genomes, confirming the results obtained using phylogenetic markers. We conclude that for the majority of acute uncomplicatedE. coli-mediated UTIs, single cultured isolates are diagnostic of the infection.IMPORTANCEIn clinical practice, the diagnosis and treatment of acute uncomplicated urinary tract infection (UTI) are based on analysis of a single bacterial isolate cultured from urine, and it is assumed that this isolate represents the dominant UTI pathogen. However, these methods detect only culturable bacteria, and the existence of multiple pathogens as well as strain diversity within a single infection is not examined. Here, we explored bacteria present in acute uncomplicated UTIs using culture-independent sequence-based methods.Escherichia coliwas the most common organism identified, and analysis ofE. colidominant UTI samples and their paired clinical isolates revealed that in the majority of infections the cultured isolate was representative of the dominant taxon at both the genus and the strain level. Our data demonstrate that in most cases single cultured isolates are diagnostic of UTI and are consistent with the notion of bottlenecks that limit strain diversity during UTI pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document