scholarly journals The Prospect of Creating Medicines Based on Selenium Nanoparticles (Review)

2020 ◽  
Vol 9 (2) ◽  
pp. 33-44
Author(s):  
K. D. Skorinova ◽  
V. V. Kuzmenko ◽  
I. A. Vasilenko

Introduction. The prospects of using nanoparticles in the production of medicines are widely discussed in the literature. In 2018 alone, the quantity of registration certificates issued by national regulators for medicines that use nanoparticles in one form or another is around forty. Most of them are medicines based on liposomes, polymers, iron oxides, micelles. So far, no registration certificates have been issued for selenium nanoparticles. One of the reasons for this situation in this area, from our point of view, is that the mechanisms of interaction of nanoparticles with cells are not sufficiently studied. The lack of basic research in this area is one of the main obstacles to the development of new-generation drugs based on nanoparticles.Text. This review is devoted to the analysis of scientific data on the interaction of selenium nanoparticles with different types of cells. The article discusses the biological properties of selenium and its role in cell metabolism. Data on the cytotoxic effect of selenium nanoparticles on various cell cultures are presented. Methods of preparation of nanoparticles and methods for studying the interaction of nanoparticles with cell cultures are described.Conclusion. Analysis of the literature data allows us to draw conclusions about the relevance of research on the interaction of selenium nanoparticles with living cells. This is necessary to determine the mechanisms of selenium nanoparticles absorption, study their cytotoxic and / or cytostatic action, and distribution in cells. Investigation of the biological interaction of selenium nanoparticles with tumor and normal cells will determine the most informative methods for registering and quantifying their antitumor activity, which is relevant for the development of new drugs to treat cancer.

2010 ◽  
Vol 9 (1) ◽  
pp. 37-73 ◽  
Author(s):  
Amro Abd alFattah Amara

This review describes the Polyhydroxyalkanoate (PHA), an intracellular biodegradable microbial polymer. PHAs is formed from different types of three hydroxyalkanoic acids monomers, each unit forms an ester bond with the hydroxyl group of the other one and the hydroxyl substituted carbon has R configuration. The C-3 atom in β position is branched with at least one carbon atom in the form of methyl group (C1) to thirteen carbons in the form of tridecyl (C13). This alkyl side chain is not necessarily saturated. PHAs are biosynthesized through regulated pathways by specific enzymes. PHAs are accumulated in bacterial cells from soluble to insoluble form as storage materials inside the inclusion bodies during unbalanced nutrition or to save organisms from reducing equivalents. PHAs are converted again to soluble components by PHAs depolymerases and the degraded materials enter various metabolic pathways. Until now, four classes of enzymes responsible for PHAs polymerization are known. PHAs were well studied regarding their promising applications, physical, chemical and biological properties. PHAs are biodegradable, biocompatible, have good material properties, renewable and can be used in many applications. The most limiting factor in PHAs commercialization is their high cost compared to the petroleum plastics. This review highlights the new knowledge and that established by the pioneers in this field as well as the factors, which affect PHAs commercialization.


2021 ◽  
Vol 11 ◽  
Author(s):  
Rachelle Asciak ◽  
Nikolaos I. Kanellakis ◽  
Xuan Yao ◽  
Megat Abd Hamid ◽  
Rachel M. Mercer ◽  
...  

ObjectivesPatients with malignant pleural mesothelioma (MPM) or pleural metastases often present with malignant pleural effusion (MPE). This study aimed to analyze the effect of pleural fluid on cancer cells.Materials and MethodsEstablished patient-derived cancer cell cultures derived from MPE (MPM, breast carcinoma, lung adenocarcinoma) were seeded in 100% pleural fluid (exudate MPM MPE, transudate MPE, non-MPE transudate fluid) and proliferation was monitored. In addition, the establishment of new MPM cell cultures, derived from MPE specimens, was attempted by seeding the cells in 100% MPE fluid.ResultsAll established cancer cell cultures proliferated with similar growth rates in the different types of pleural fluid. Primary MPM cell culture success was similar with MPE fluid as with full culture medium.ConclusionsPleural fluid alone is adequate for cancer cell proliferation in vitro, regardless of the source of pleural fluid. These results support the hypothesis that pleural fluid has important pro-growth biological properties, but the mechanisms for this effect are unclear and likely not malignant effusion specific.


2014 ◽  
Vol 86 (9) ◽  
pp. 1365-1375 ◽  
Author(s):  
Nadezhda E. Ustyuzhanina ◽  
Natalia A. Ushakova ◽  
Marina E. Preobrazhenskaya ◽  
Maria I. Bilan ◽  
Eugenia A. Tsvetkova ◽  
...  

AbstractAnionic fucose-containing polysaccharides (fucoidans of brown seaweeds, sulfated fucans and fucosylated chondroitin sulfates of invertebrates) are attracting a rapidly growing research interest due to different types of their biological activity discovered in recent years. In particular, algal fucoidans are characterized by large structural variations depending on the species used for their isolation and by the lack of structural regularity due to random distribution of both carbohydrate and non-carbohydrate substituents along the polymer chains. These features make it difficult to find distinct correlations between structural elements and biological properties of polysaccharides. Nevertheless, there is expectation that systematic structural and biochemical studies of fucoidans will form a basis for the development of new drugs. Herewith we summarize our recent results on the influence of fucoidan structure on blood coagulation.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1952 ◽  
Author(s):  
Enrico V. Perrino ◽  
Francesca Valerio ◽  
Shaima Jallali ◽  
Antonio Trani ◽  
Giuseppe N. Mezzapesa

This study evaluated the effects of ecology (plant community, topography and pedology), as well as of climate, on the composition of essential oils (EOs) from two officinal wild plant species (Lamiales) from Apulia, namely Satureja cuneifolia Ten. and Thymus spinulosus Ten. Few scientific data on their chemical composition are available, due to the fact that the first has a limited distribution range and the second is endemic of southern Italy. Results for both species, never officially used in traditional medicine and/or as spices, showed that the ecological context (from a phytosociological and ecological point of view) may influence their EO composition, and hence, yield chemotypes different from those reported in the literature. S. cuneifolia and Th. spinulosus can be considered good sources of phytochemicals as natural agents in organic agriculture due to the presence of thymol and α-pinene. Overall, the obtained trend for EOs suggests a potential use of both species as food, pharmacy, cosmetics and perfumery. Hence, their cultivation and use represent a positive step to reduce the use of synthetic chemicals and to meet the increasing demand for natural and healthier products.


2019 ◽  
Author(s):  
Heba Abdel Wahed Sayed

A collection of 30 clay oil lamps from Gunther Grimm's excavations in 1973 in the Western necropolis of Alexandria has been classified by Safaa Samir Abu Al Yazid from Tanta University and found to represent 12 different types ranging in time from the Hellenistic to the late Roman periods in Egypt's ancient history. The present paper looks at this collection from the point of view of the symbolic significance of the decorative motifs used in their decoration. These motifs— figural, floral and geometric—had obvious symbolic meaning to their users and signified more than a simple belief in certain deities. They also reflected Roman Egyptian culture.


2020 ◽  
Vol 27 (9) ◽  
pp. 1387-1404 ◽  
Author(s):  
Karishma Biswas ◽  
Humaira Ilyas ◽  
Aritreyee Datta ◽  
Anirban Bhunia

Antimicrobial Peptides (AMPs), within their realm incorporate a diverse group of structurally and functionally varied peptides, playing crucial roles in innate immunity. Over the last few decades, the field of AMP has seen a huge upsurge, mainly owing to the generation of the so-called drug resistant ‘superbugs’ as well as limitations associated with the existing antimicrobial agents. Due to their resilient biological properties, AMPs can very well form the sustainable alternative for nextgeneration therapeutic agents. Certain drawbacks associated with existing AMPs are, however, issues of major concern, circumventing which are imperative. These limitations mainly include proteolytic cleavage and hence poor stability inside the biological systems, reduced activity due to inadequate interaction with the microbial membrane, and ineffectiveness because of inappropriate delivery among others. In this context, the application of naturally occurring AMPs as an efficient prototype for generating various synthetic and designed counterparts has evolved as a new avenue in peptide-based therapy. Such designing approaches help to overcome the drawbacks of the parent AMPs while retaining the inherent activity. In this review, we summarize some of the basic NMR structure based approaches and techniques which aid in improving the activity of AMPs, using the example of a 16-residue dengue virus fusion protein derived peptide, VG16KRKP. Using first principle based designing technique and high resolution NMR-based structure characterization we validate different types of modifications of VG16KRKP, highlighting key motifs, which optimize its activity. The approaches and designing techniques presented can support our peers in their drug development work.


2020 ◽  
Vol 21 (4) ◽  
pp. 429-438 ◽  
Author(s):  
Bruno Casciaro ◽  
Francesca Ghirga ◽  
Deborah Quaglio ◽  
Maria Luisa Mangoni

Cationic antimicrobial peptides (AMPs) are an interesting class of gene-encoded molecules endowed with a broad-spectrum of anti-infective activity and immunomodulatory properties. They represent promising candidates for the development of new antibiotics, mainly due to their membraneperturbing mechanism of action that very rarely induces microbial resistance. However, bringing AMPs into the clinical field is hampered by some intrinsic limitations, encompassing low peptide bioavailability at the target site and high peptide susceptibility to proteolytic degradation. In this regard, nanotechnologies represent an innovative strategy to circumvent these issues. According to the literature, a large variety of nanoparticulate systems have been employed for drug-delivery, bioimaging, biosensors or nanoantibiotics. The possibility of conjugating different types of molecules, including AMPs, to these systems, allows the production of nanoformulations able to enhance the biological profile of the compound while reducing its cytotoxicity and prolonging its residence time. In this minireview, inorganic gold nanoparticles (NPs) and biodegradable polymeric NPs made of poly(lactide-coglycolide) are described with particular emphasis on examples of the conjugation of AMPs to them, to highlight the great potential of such nanoformulations as alternative antimicrobials.


2020 ◽  
Vol 16 (6) ◽  
pp. 784-795
Author(s):  
Krisnna M.A. Alves ◽  
Fábio José Bonfim Cardoso ◽  
Kathia M. Honorio ◽  
Fábio A. de Molfetta

Background:: Leishmaniosis is a neglected tropical disease and glyceraldehyde 3- phosphate dehydrogenase (GAPDH) is a key enzyme in the design of new drugs to fight this disease. Objective:: The present study aimed to evaluate potential inhibitors of GAPDH enzyme found in Leishmania mexicana (L. mexicana). Methods: A search for novel antileishmanial molecules was carried out based on similarities from the pharmacophoric point of view related to the binding site of the crystallographic enzyme using the ZINCPharmer server. The molecules selected in this screening were subjected to molecular docking and molecular dynamics simulations. Results:: Consensual analysis of the docking energy values was performed, resulting in the selection of ten compounds. These ligand-receptor complexes were visually inspected in order to analyze the main interactions and subjected to toxicophoric evaluation, culminating in the selection of three compounds, which were subsequently submitted to molecular dynamics simulations. The docking results showed that the selected compounds interacted with GAPDH from L. mexicana, especially by hydrogen bonds with Cys166, Arg249, His194, Thr167, and Thr226. From the results obtained from molecular dynamics, it was observed that one of the loop regions, corresponding to the residues 195-222, can be related to the fitting of the substrate at the binding site, assisting in the positioning and the molecular recognition via residues responsible for the catalytic activity. Conclusion:: he use of molecular modeling techniques enabled the identification of promising compounds as inhibitors of the GAPDH enzyme from L. mexicana, and the results obtained here can serve as a starting point to design new and more effective compounds than those currently available.


2004 ◽  
Vol 69 (3) ◽  
pp. 499-510 ◽  
Author(s):  
Petra Beranová ◽  
Karel Chalupský ◽  
Gustav Entlicher

Nω-Hydroxy-L-arginine (NOHA) is a stable intermediate in NO formation from L-arginine catalyzed by NO synthase (NOS). Apparently, NOHA can be released and serve as a stable reserve NO donor (as a substrate of NOS) or transported and exert its own biological effects. It shows endothelium-dependent as well as endothelium-independent vasorelaxant activity. The latter case indicates that NOHA can be metabolized by pathways independent of NOS. These possibilities are discussed in detail. Of the available NOHA homologues homo-NOHA is a good substrate of NOS while nor-NOHA seems to be a very poor substrate of this enzyme. On the contrary, nor-NOHA exerts arginase inhibitory activity 20 times higher than NOHA whereas homo-NOHA is inactive. Detailed investigation of biological activities of NOHA and its homologues seems to be promising from the pharmacological point of view. A review with 43 references.


2017 ◽  
Vol 39 (3) ◽  
Author(s):  
Leah McEwen ◽  
David Martinsen

AbstractAs the scale of global commerce and opportunities for multidisciplinary collaboration increase, there is greater pressure on basic research to supply a quick return on investment (ROI). The emergence and development of digital information technologies in the new millennium have inspired a new look at how research outputs are managed and disseminated. The driving question in the minds of many research funders is this—will lowering the barriers for access increase the value of research for the greater society? This is a particularly interesting question to consider for measurement data, the greater amount of which are scattered across millions of separate, fixed publications (not to mention those never published and lingering in file drawers and on hard drives). Can the advent of cloud technologies, exchange standards, and provenance tracking facilitate improved access, evaluation, and use of data for both research and commerce? Can new value and discovery be realized through the greater aggregation of measured scientific data as “Big Data”?


Sign in / Sign up

Export Citation Format

Share Document