scholarly journals Development of a functional ingredient rich in hesperidin from citrus fruit wastes

2021 ◽  
Vol 10 (12) ◽  
pp. e369101220530
Author(s):  
Camila Tomé da Cunha ◽  
Andressa Fontes Oliveira ◽  
Victor Borges Fernandes ◽  
Francisca Noélia Pereira Mendes ◽  
Ícaro Gusmão Pinto Vieira

The peels of citrus fruits contain a high concentration of bioactive compounds. Among these compounds, hesperidin stands out for its beneficial health effects. This study had the objective of evaluating the hesperidin content in peel samples of different citrus fruit and to propose the development of a functional product obtained from these peels. The peels were lyophilized and had the total flavonoids analyzed by high-performance liquid chromatography. The peels of several fruits were dried in a microwave oven and ground in a blender to obtain a homogeneous powder. This material was submitted to extraction and quantification of hesperidin. The highest concentrations were found in the ‘Ponkan’ tangerine, ‘Murcott’ tangerine and ‘Navel’ orange, while the lowest were found in the ‘Sicilian’ lemon and ‘Lima’ orange. The functional ingredient obtained from the ground peels after microwave drying can be used for direct consumption or to enrich food preparations.

Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 831
Author(s):  
Jiebiao Chen ◽  
Yue Wang ◽  
Tailin Zhu ◽  
Sijia Yang ◽  
Jinping Cao ◽  
...  

Polymethoxyflavones (PMFs) are special flavonoids in citrus fruits that have been suggested to be beneficial to human health. However, whether PMFs in citrus fruit alter human gut microbiota is not well understood. The aim of the present study was to investigate the effects of PMF-rich fraction from Ougan (Citrus reticulata cv. Suavissima) on gut microbiota and evaluate the intestinal metabolic profile of PMFs in Institute of Cancer Research mice. The main components of the PMF-rich fraction were nobiletin, tangeretin, and 5-demethylnobiletin. The composition of the gut microbiota was analyzed using 16S ribosomal DNA sequencing. The results showed that after oral administration, the composition of mice gut microbiota was significantly altered. The relative abundance of two probiotics, Lactobacillus and Bifidobacterium, were found to increase significantly. A total of 21 metabolites of PMFs were detected in mice intestinal content by high performance liquid chromatography electrospray ionization tandem mass spectrometry, and they were generated through demethylation, demethoxylation, hydroxylation, and glucuronidation. Our results provided evidence that PMFs have potential beneficial regulatory effects on gut microbiota that in turn metabolize PMFs, which warrants further investigation in human clinical trials.


Author(s):  
Lin Lin ◽  
Piyadarsha Amaratunga ◽  
Jerome Reed ◽  
Pornkamol Huang ◽  
Bridget Lorenz Lemberg ◽  
...  

Abstract Quantitative analysis of Δ9-tetrahydrocannabinol (Δ9-THC) in oral fluid has gained increasing interest in clinical and forensic toxicology laboratories. New medicinal and/or recreational cannabinoid products require laboratories to distinguish different patterns of cannabinoid use. This study validated a high-performance liquid chromatography-tandem mass spectrometry method for 13 different cannabinoids, including (-)-trans-Δ8-tetrahydrocannabinol (Δ8-THC), (-)-trans-Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), Δ9-tetrahydrocannabinolic acid-A (Δ9-THCA-A), cannabidiolic acid (CBDA), 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-Δ9-THC), 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (Δ9-THCCOOH), tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), cannabidiorcol (CBD-C1), cannabichromene (CBC), cannabinol (CBN) and cannabigerol (CBG), in oral fluid. Baseline separation was achieved in the entire quantitation range between Δ9-THC and its isomer Δ8-THC. The quantitation range of Δ9-THC, Δ8-THC and CBD was from 0.1 to 800 ng/mL. Two hundred human subject oral fluid samples were analyzed with this method after solid phase extraction. Among the 200 human subject oral fluid samples, all 13 cannabinoid analytes were confirmed in at least one sample. Δ8-THC was confirmed in 11 samples, with or without the presence of Δ9-THC. A high concentration of 11-OH-Δ9-THC or Δ9-THCCOOH (>400 ng/mL) was confirmed in three samples. CBD, Δ9-THCA-A, THCV, CBN and CBG were confirmed in 74, 39, 44, 107 and 112 of the 179 confirmed Δ9-THC-positive samples, respectively. The quantitation of multiple cannabinoids and metabolites in oral fluid simultaneously provides valuable information for revealing cannabinoid consumption and interpreting cannabinoid-induced driving impairment.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Akikazu Sakudo ◽  
Yoshihito Yagyu

AbstractEfficient methods to achieve the safe decontamination of agricultural products are needed. Here, we investigated the decontamination of citrus fruits to test the antifungal potential of a novel non-thermal gas plasma apparatus, termed a roller conveyer plasma instrument. This instrument generates an atmospheric pressure dielectric barrier discharge (APDBP) plasma on a set of rollers. Penicillium venetum was spotted onto the surface of the fruit or pericarps, as well as an aluminium plate to act as a control, before performing the plasma treatment. The results showed that viable cell number of P. venetum decreased with a decimal reduction time (D value or estimated treatment time required to reduce viable cell number by 90%) of 0.967 min on the aluminium plate, 2.90 min and 1.88 min on the pericarps of ‘Kiyomi’ (Citrus unshiu × C. sinensis) and ‘Kawano-natsudaidai’ (C. natsudaidai) respectively, and 2.42 min on the surface of ‘Unshu-mikan’ (C. unshiu). These findings confirmed a fungicidal effect of the plasma not only on an abiotic surface (aluminium plate) but also on a biotic surface (citrus fruit). Further development of the instrument by combining sorting systems with the plasma device promises an efficient means of disinfecting citrus fruits during food processing.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1808
Author(s):  
Rosa Tundis ◽  
Carmela Conidi ◽  
Monica R. Loizzo ◽  
Vincenzo Sicari ◽  
Rosa Romeo ◽  
...  

Olive mill wastewater (OMW), generated as a by-product of olive oil production, is considered one of the most polluting effluents produced by the agro-food industry, due to its high concentration of organic matter and nutrients. However, OMW is rich in several polyphenols, representing compounds with remarkable biological properties. This study aimed to analyze the chemical profile as well as the antioxidant and anti-obesity properties of concentrated fractions obtained from microfiltered OMW treated by direct contact membrane distillation (DCMD). Ultra-high performance liquid chromatography (UHPLC) analyses were applied to quantify some phenols selected as phytochemical markers. Moreover, α-Amylase, α-glucosidase, and lipase inhibitory activity were investigated together with the antioxidant activity by means of assays, namely β-carotene bleaching, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic) acid (ABTS) diammonium salts, 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, and Ferric Reducing Activity Power (FRAP) tests. MD retentate—which has content of about five times greater of hydroxytyrosol and verbascoside and about 7 times greater of oleuropein than the feed—was more active as an antioxidant in all applied assays. Of interest is the result obtained in the DPPH test (an inhibitory concentration 50% (IC50) of 9.8 μg/mL in comparison to the feed (IC50 of 97.2 μg/mL)) and in the ABTS assay (an IC50 of 0.4 μg/mL in comparison to the feed (IC50 of 1.2 μg/mL)).


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1738
Author(s):  
Saeid Vafaei ◽  
Alexander Wolosz ◽  
Catlin Ethridge ◽  
Udo Schnupf ◽  
Nagisa Hattori ◽  
...  

SnO2 nanoparticles are regarded as attractive, functional materials because of their versatile applications. SnO2 nanoaggregates with single-nanometer-scale lumpy surfaces provide opportunities to enhance hetero-material interfacial areas, leading to the performance improvement of materials and devices. For the first time, we demonstrate that SnO2 nanoaggregates with oxygen vacancies can be produced by a simple, low-temperature sol-gel approach combined with freeze-drying. We characterize the initiation of the low-temperature crystal growth of the obtained SnO2 nanoaggregates using high-resolution transmission electron microscopy (HRTEM). The results indicate that Sn (II) hydroxide precursors are converted into submicrometer-scale nanoaggregates consisting of uniform SnO2 spherical nanocrystals (2~5 nm in size). As the sol-gel reaction time increases, further crystallization is observed through the neighboring particles in a confined part of the aggregates, while the specific surface areas of the SnO2 samples increase concomitantly. In addition, X-ray photoelectron spectroscopy (XPS) measurements suggest that Sn (II) ions exist in the SnO2 samples when the reactions are stopped after a short time or when a relatively high concentration of Sn (II) is involved in the corresponding sol-gel reactions. Understanding this low-temperature growth of 3D SnO2 will provide new avenues for developing and producing high-performance, photofunctional nanomaterials via a cost-effective and scalable method.


2019 ◽  
Vol 8 (3) ◽  
pp. 671-674

Bioanalytical methods for bioequivalence studies require high sensibility and rapidity due to the large number of samples and the low plasma concentration of drugs. The present study aimed to develop and validate a high-performance liquid chromatography method to quantify cimetidine (CMT) in human plasma and to apply it in a bioequivalence study. Spiked plasma of 500 µl (l, m and h concentration) was used for the assay. The HPLC injection volume was 20μl of the reconstitute sample where, 2 ml of ethyl acetate used for extraction purposes. Cimetidine was prepared separately for low (80 ng/ml), medium (2000 ng/ml) and high (3600 ng/ml) concentrations and internal standard (ranitidine) concentration was 3000 ng/ml. Freeze thawing and long terms stability were conducted at -25º c. The individual calibration curve for spiked standards was linear with R2= 0.99. The inaccuracy values for QC samples were within 15% of the actual value and not more than 20% for the LOQ. The limit of quantitation (LOQ) was 40 ng/ml, which was also the lowest concentration of cimetidine that was quantitated with the variability of 5.9%. The within day precision and between day precision for LOQ were 10.8 and 5.9 respectively. The retention time for the analyte was 4.1-4.5 minutes during the within a day and between day results. The mean % inaccuracy values for low, medium and high concentration were 6.8, 5.6 and 7.8 respectively for within day and 2.4, 6.1 and 7.9 respectively for between days. The within day and between day % inaccuracy for LOQ concentration was 12.4 and 5.5 respectively. The mean recoveries for low, medium and high concentration of cimetidine were 80.2, 70.9 and 74.2. The overall mean recovery for cimetidine was 75.1%. The maximum inaccuracy for freeze thaw cycle and long term stability samples for low, medium and high was found with CV less than 15% for all concentrations, indicating that cimetidine is stable. The developed method was precise and accurate and was suitable to be applied for the bioequivalence study of cimetidine.


2019 ◽  
Vol 48 (5) ◽  
pp. 95-101
Author(s):  
Ulzii-Orshikh Dorj ◽  
Uranbaigal Dejidbal ◽  
Hongseok Chae ◽  
Lkhagvadorj Batsambuu ◽  
Altanchimeg Badarch ◽  
...  

A new computer vision algorithm for citrus fruit quality classification based on the size of a single tree fruits was developed in this study. The image properties of area, perimeter, and diameter for the citrus fruits were measured by pixels. In order to estimate citrus fruit size in a realistic manner, the ratios of diameter, perimeter and area in pixel values in relation to the actual size of one fruit were determined. The total of 1860 citrus fruits were grouped based on diameter, perimeter, and area in pixels. The results of the grouping of citrus fruits by diameter, perimeter and area were compared with the results of the survey research into citrus fruit size as conducted by the Jeju Citrus Commission. Comparative results reveal that the image of the citrus fruit diameter in pixels demonstrate a more accurate size than the other two pixel values, i.e. perimeter and area.


Author(s):  
Paolo Bellavite ◽  
Alberto Donzelli

Among the many approaches to COVID-19 prevention, the possible role of diet has so far been somewhat marginal. Nutrition is very rich in substances with a potential beneficial effect on health and some of these could have an antiviral action or in any case be important in modulating the immune system and in defending cells from the oxidative stress associated with infection. This short review draws the attention on some components of Citrus fruits and especially of the orange (Citrus sinensis), well known for its vitamin content, but less for the function of its flavonoids. Among the latter, hesperidin has recently attracted the attention of researchers, because it binds to the key proteins of the SARS-CoV-2 virus. Several computational methods, independently applied by different researchers, showed that hesperidin has a low binding energy both with the coronavirus "spike" protein, and with the main protease that transforms the early proteins of the virus (pp1a and ppa1b) into the complex responsible for viral replication. The affinity of hesperidin for these proteins is comparable if not superior to that of common chemical antivirals. The preventive efficacy of vitamin C, at dosage attainable by diet, against viral infections is controversial, but recent reviews suggest that this substance may be useful in case of increased stress on the immune system. Finally, the reasons that suggest undertaking appropriate research on the Citrus fruits addition in the diet, as a complementary prevention and treatment of COVID-19, are discussed.


2019 ◽  
Vol 35 (3) ◽  
pp. 186-191 ◽  
Author(s):  
Scott P. Carroll ◽  
Jeffrey Venturino ◽  
John H. Davies

ABSTRACT The use of skin-applied repellents is the primary method recommended by the Centers for Disease Control and Prevention for personal protection against biting mosquitoes. Historically, the majority of long-efficacy mosquito repellents have been N,N diethyl-3-methylbenzamide (deet)–based. Recently, a variety of new botanical formulations have been marketed, but their protection times generally continue to fall well short of high-concentration deet products. We present a laboratory arm-in-cage study of a Neo-Innova® repellent that has a prolonged action “NEO-PART®” (Prolonged Action Release Technology) formulation with 40% Citriodiol®. This formulation provides the botanical molecule para-menthane 3,8-diol (PMD) at 25% w/v of the total formulation. Against Aedes aegypti, Neo-Innova's mean complete protection time (CPT; 14.2 h) was approximately 2 to 3 times longer than that of 5 leading high-performance repellents marketed in the USA, including 25% deet and a 20% PMD ethanolic formulation. When testing Neo-Innova, 5 of the 6 subjects had no landings after 15 h. The 6th had single landings at 10 and 11 h (individual CPT of 10 h), but received no additional landings in further exposures made at 13 and 15 h. Neo-Innova repellency against Culex quinquefasciatus was similarly prolonged. The tremendous increment in repellency duration observed for the Neo-Innova product, when compared with both current standard and botanical repellent options, represents a milestone in repellent development and supports “once-a-day” applications as a practical strategy for personal protection against mosquitoes.


Sign in / Sign up

Export Citation Format

Share Document