scholarly journals Effect of using ultrasound to break dormancy and germination of xylopia emarginata mart seeds.

2020 ◽  
Vol 9 (9) ◽  
pp. e789997840
Author(s):  
Gênesis Alves de Azevedo ◽  
Andressa Aparecida Rodrigues de Melo ◽  
Luan Dionnes Kaiber Moreira ◽  
Rafael dos Santos Silva ◽  
Douglas Enrique Juárez Sánchez ◽  
...  

Xylopia emarginata Mart. is a typical species of gallery forests, characterized by its tolerance to strong water saturation, becoming a potential species for the recovery of riparian ecosystems, thus, evaluating the germination process of this species is of great importance, as it covers technical knowledge about the production of seedlings used in the revegetation of degraded areas. Some seeds have dormancy requiring techniques to accelerate germination. The present study aimed to evaluate the influence of ultrasound bathing on germination and conductivity of the spécies Xylopia emarginata Mart. The seeds were subjected to different immersion times (0, 3, 6, 9, 12, 15 and 18 minutes) in an ultrasonic bath (45 kHz) in distilled water and placed in BOD at 25 ºC to evaluate the electrical conductivity of the solution (50 ml). Then, they were placed to germinate in trays with vermiculite under environmental laboratory conditions for 60 days, to evaluate the percentage of final germination. 30 seeds were used for each of the 6 repetitions. The analysis of variance showed no significant effect (p> 0.05) of the ultrasonic bath on the conductivity and germination of Xylopia emarginata Mart. Seeds, obtaining an average conductivity of 173.32 µS cm-1 at 25 ºC and germination average of 24.27%.

1985 ◽  
Vol 25 (06) ◽  
pp. 945-953 ◽  
Author(s):  
Mark A. Miller ◽  
H.J. Ramey

Abstract Over the past 20 years, a number of studies have reported temperature effects on two-phase relative permeabilities in porous media. Some of the reported results, however, have been contradictory. Also, observed effects have not been explained in terms of fundamental properties known to govern two-phase flow. The purpose of this study was to attempt to isolate the fundamental properties affecting two-phase relative permeabilities at elevated temperatures. Laboratory dynamic-displacement relative permeability measurements were made on unconsolidated and consolidated sand cores with water and a refined white mineral oil. Experiments were run on 2-in. [5.1-cm] -diameter, 20-in. [52.-cm] -long cores from room temperature to 300F [149C]. Unlike previous researchers, we observed essentially no changes with temperature in either residual saturations or relative permeability relationships. We concluded that previous results may have been affected by viscous previous results may have been affected by viscous instabilities, capillary end effects, and/or difficulties in maintaining material balances. Introduction Interest in measuring relative permeabilities at elevated temperatures began in the 1960's with petroleum industry interest in thermal oil recovery. Early thermal oil recovery field operations (well heaters, steam injection, in-situ combustion) indicated oil flow rate increases far in excess of what was predicted by viscosity reductions resulting from heating. This suggested that temperature affects relative permeabilities. One of the early studies of temperature effects on relative permeabilities was presented by Edmondson, who performed dynamic displacement measurements with crude performed dynamic displacement measurements with crude and white oils and distilled water in Berea sandstone cores. Edmondson reported that residual oil saturations (ROS's) (at the end of 10 PV's of water injected) decreased with increasing temperature. Relative permeability ratios decreased with temperature at high water saturations but increased with temperature at low water saturations. A series of elevated-temperature, dynamic-displacement relative permeability measurements on clean quartz and "natural" unconsolidated sands were reported by Poston et al. Like Edmondson, Poston et al. reported a decrease in the "practical" ROS (at less than 1 % oil cut) as temperature increased. Poston et al. also reported an increase in irreducible water saturation. Although irreducible water saturations decreased with decreasing temperature, they did not revert to the original room temperature values. It was assumed that the cores became increasingly water-wet with an increase in both temperature and time; measured changes of the IFT and the contact angle with temperature increase, however, were not sufficient to explain observed effects. Davidson measured dynamic-displacement relative permeability ratios on a coarse sand and gravel core with permeability ratios on a coarse sand and gravel core with white oil displaced by distilled water, nitrogen, and superheated steam at temperatures up to 540F [282C]. Starting from irreducible water saturation, relative permeability ratio curves were similar to Edmondson's. permeability ratio curves were similar to Edmondson's. Starting from 100% oil saturation, however, the curves changed significantly only at low water saturations. A troublesome aspect of Davidson's work was that he used a hydrocarbon solvent to clean the core between experiments. No mention was made of any consideration of wettability changes, which could explain large increases in irreducible water saturations observed in some runs. Sinnokrot et al. followed Poston et al.'s suggestion of increasing water-wetness and performed water/oil capillary pressure measurements on consolidated sandstone and limestone cores from room temperature up to 325F [163C]. Sinnokrot et al confirmed that, for sandstones, irreducible water saturation appeared to increase with temperature. Capillary pressures increased with temperature, and the hysteresis between drainage and imbibition curves reduced to essentially zero at 300F [149C]. With limestone cores, however, irreducible water saturations remained constant with increase in temperature, as did capillary pressure curves. Weinbrandt et al. performed dynamic displacement experiments on small (0.24 to 0.49 cu in. [4 to 8 cm3] PV) consolidated Boise sandstone cores to 175F [75C] PV) consolidated Boise sandstone cores to 175F [75C] with distilled water and white oil. Oil relative permeabilities shifted toward high water saturations with permeabilities shifted toward high water saturations with increasing temperature, while water relative permeabilities exhibited little change. Weinbrandt et al. confirmed the findings of previous studies that irreducible water saturation increases and ROS decreases with increasing temperature. SPEJ P. 945


2014 ◽  
Vol 08 (02) ◽  
pp. 160-165 ◽  
Author(s):  
Isabel Cristina G. Bandeira de Andrade ◽  
Roberta Tarkany Basting ◽  
José Augusto Rodrigues ◽  
Flávia Lucisano Botelho do Amaral ◽  
Cecilia Pedroso Turssi ◽  
...  

ABSTRACT Objectives: The present study aimed to investigate the effect of staining solutions on microhardness and shade changes of a nanofilled resin composite, which had been previously in contact with bleaching agents. Materials and Methods: A total of 135 disk-shaped specimens (10 mm × 2 mm) were fabricated with a nanofilled resin (Filtek Supreme) and photocured with a Light Emission Diode (LED) unit and then allocated into three groups to be bleached with 10% or 16% carbamide peroxide (CP) bleaching agents or a 35% hydrogen peroxide (HP) product. Following bleaching, specimens within each group were subdivided into three groups to be immersed in coffee, red wine or distilled water. Microhardness and color were monitored at baseline, after bleaching and after staining. Results: Analysis of variance for split-plot design showed lower microhardness values when the composite had been in contact with HP (P < 0.0001). The specimens immersed in red wine and coffee provided lower microhardness values than those immersed in distilled water, regardless of the bleaching agent to which the composites were previously exposed. Kruskal Wallis and Dunn tests demonstrated that the composite was lighter after bleaching with a 35% HP agent (P < 0.0500). Conclusion: The composite was darker as a result of being immersed either in red wine or coffee, regardless of the bleaching agent.


2020 ◽  
Vol 223 (2) ◽  
pp. 993-1006
Author(s):  
Luong Duy Thanh ◽  
Damien Jougnot ◽  
Phan Van Do ◽  
Nguyen Van Nghia A ◽  
Vu Phi Tuyen ◽  
...  

SUMMARY In reservoir and environmental studies, the geological material characterization is often done by measuring its electrical conductivity. Its main interest is due to its sensitivity to physical properties of porous media (i.e. structure, water content, or fluid composition). Its quantitative use therefore depends on the efficiency of the theoretical models to link them. In this study, we develop a new physically based model that takes into account the surface conductivity for estimating electrical conductivity of porous media under partially saturated conditions. The proposed model is expressed in terms of electrical conductivity of the pore fluid, water saturation, critical water saturation and microstructural parameters such as the minimum and maximum pore/capillary radii, the pore fractal dimension, the tortuosity fractal dimension and the porosity. Factors influencing the electrical conductivity in porous media are also analysed. From the proposed model, we obtain an expression for the relative electrical conductivity that is consistent with other models in literature. The model predictions are successfully compared with published experimental data for different types of porous media. The new physically based model for electrical conductivity opens up new possibilities to characterize porous media under partially saturated conditions with geoelectrical and electromagnetic techniques.


2011 ◽  
Vol 474-476 ◽  
pp. 36-39 ◽  
Author(s):  
Yong Dong Sun ◽  
Xin Zheng Li ◽  
He Lian Yang ◽  
Li Sun

The present study was conducted to investigate the effect of seed priming techniques on germination characteristics of C. maxima Duch. cultivar (Beiguan). Treatments were combinations of 3 levels of priming (distilled water, NaCl and PEG6000) and non-priming (control) with 3 replications. Concentrations of NaCl solution were 50, 100, 150, 200 mmol•L-1, and polyethylene glycol (PEG) 6000 were 10%, 20%, 30%, 40%, respectively. Seeds were primed using the above priming materials for 24 hours at 20°C in the dark, respectively. The results showed that different priming techniques could have various effects on germination of Beiguan seeds. Hydropriming (distilled water), NaCl priming and PEG6000 priming (10%) all improved the germination characteristics of Beiguan, compared to the control. NaCl priming was more effective than hydropriming and PEG6000 priming and was the most successful technique in this study. These findings indicated that seed priming techniques could accelerate germination process and were simple and cheap, we should propose these methods to farmers.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Maura Cristiane Gonçales Orçati Dorileo ◽  
Ricardo Dalla Villa ◽  
Orlando Aguirre Guedes ◽  
Andreza Maria Fábio Aranha ◽  
Alex Semenoff-Segundo ◽  
...  

Physicochemical properties of pozzolan Portland cement were compared to ProRoot MTA and MTA BIO. To test the pH, the samples were immersed in distilled water for different periods of time. After the pH analysis, the sample was retained in the plastic recipient, and the electrical conductivity of the solution was measured. The solubility and radiopacity properties were evaluated according to specification 57 of the American National Standard Institute/American Dental Association (ANSI/ADA). The statistical analyses were performed using ANOVA and Tukey’s test at a 5% level of significance. Pozzolan Portland cement exhibited pH and electrical conductivity mean values similar to those of the MTA-based cements. The solubilities of all tested materials were in accordance with the ANSI/ADA standards. Only the MTA-based cements met the ANSI/ADA recommendations for radiopacity. It might be concluded that the pH and electrical conductivity of pozzolan Portland cement are similar to and comparable to those of MTA-based cements.


2015 ◽  
Vol 21 (2) ◽  
pp. 221
Author(s):  
Lucas Cavalcante Da Costa ◽  
Fernanda Ferreira De Araújo ◽  
Teresa Drummond Correia Mendes ◽  
Fernando Luiz Finger

<p>Several experiments reveal that distilled water varies among different laboratories and also does not have a standard composition. Water electrical conductivity (EC) of vase solution is one of the parameters that influence the water uptake by cut flowers. Therefore, the objective of this work was to evaluate the influence of electrical conductivity on water uptake and vase life in cut stems of gladiolus. The stems harvested and kept in distilled water (pH 6.6, EC &lt;0.01dS m-1) and tap water (pH 7.0, EC 0.75 dS m-1) at room temperature. Flowers kept in tap water showed lower fresh weight loss after the second day and higher water uptake during vase life. In a second set of experiments, we verified the limit EC saturation supported by the flower. For this, flowers were placed in individual test tubes containing four different solutions with varying ion concentrations. Solution 2 (EC 0.60 dS m-1) promoted increased vase life and allowed maximum water uptake by the flowers. The results show that the electrical conductivity of vase solution is a major parameter in experiments with vase life of cut gladiolus. The presence of ions in the vase solution increases the overall vase life and improves water uptake of flowers with favorable optimal EC between 0.60 to 0.87 dS m-1.</p>


HortScience ◽  
2008 ◽  
Vol 43 (7) ◽  
pp. 2167-2170 ◽  
Author(s):  
Huan-Ying Yao ◽  
Ren-Shih Chung ◽  
Sheng-Bin Ho ◽  
Yao-Chien Alex Chang

Sphagnum moss, which has very different chemical and physical characteristics compared with other soilless media, is commonly used as a substrate to grow Phalaenopsis in countries such as Japan and Taiwan. Pour-through (PT) is a nondestructive, effective, and convenient medium extraction method developed for peat-based media. To know if PT can be applied to sphagnum moss and to set up a standard procedure, experiments were conducted to test the effects of volume and electrical conductivity (EC) of the displacing solution and the timing of leachate collection on leachate properties. Results demonstrated that applying distilled water with a volume less than 70 mL to 10.5-cm pots 1 h after fertigation did not influence leachate EC and pH. Applying displacing solution with EC between 0.001 and 0.93 dS·m−1 1 h after fertigation did not affect leachate EC or pH. Thus, in theory, a variety of solutions may be used for displacement. Leachate properties were found to remain consistent when collected between 20 and 160 min after fertigation. These results demonstrated that PT can be successfully used in Phalaenopsis cultivation with sphagnum moss. Furthermore, substrate EC obtained by PT extraction was highly correlated with that by the press method, confirming that PT is a feasible medium extraction method for sphagnum moss in Phalaenopsis cultivation.


Sign in / Sign up

Export Citation Format

Share Document