scholarly journals Effect of substrate type and pellet age on the resuspension of Atlantic salmon faecal material

2020 ◽  
Vol 12 ◽  
pp. 117-129 ◽  
Author(s):  
MA Carvajalino-Fernández ◽  
NB Keeley ◽  
I Fer ◽  
BA Law ◽  
RJ Bannister

The influence of substrate type and particle age on the remobilization of settled Atlantic salmon Salmo salar faecal material was studied through a set of controlled experiments in horizontal flow flumes, simulating different bottom conditions present in fish-farming locations along the coast of Norway. There was no significant effect of pellet age on remobilization for up to 1 week old faecal material, but critical shear stresses (τc) and velocities required for resuspending faecal pellets were strongly dependent on substrate type. Smooth substrates such as mud and rock slate required lower stresses for the onset of faeces resuspension (τc %%CONV_ERR%% 0.06 Pa) than rougher surfaces such as sand (τc %%CONV_ERR%% 0.12 Pa) or fragmented rock (τc %%CONV_ERR%% 0.32 Pa), where bedforms and large fractures shield the particles from the direct influence of the drag forces. These newly determined substrate-dependent τc resuspension thresholds will contribute to the construction of more accurate numerical models that include bottom type as a parameter regulating the extent of particle spreading, in contrast to the constant-value approach that has been used to date.

2022 ◽  
Vol 8 ◽  
Author(s):  
Arturo Zenone ◽  
Fabio Badalamenti ◽  
Adriana Alagna ◽  
Stanislav N. Gorb ◽  
Eduardo Infantes

Among a suite of abiotic and biotic factors, the hydrodynamic regime strongly influences the success of seagrass recruitment through sexual propagules. Uprooting of propagules by drag forces exerted by currents and waves is one of the main causes for the failed establishment and the consequent recruitment. Substrate type and stability play a key role in determining the success of colonization through sexual propagules, as seedling establishment probabilities proved to be significantly higher on rocky bottoms than on unstable unconsolidated substrates. In this research, the current and wave flow intensity that Posidonia oceanica seedlings anchored to rocky substrates can withstand before uprooting were evaluated and the influence of substrate complexity on seedling anchorage success and anchorage strength was investigated. P. oceanica seedlings withstood the current velocity of 70 cm s–1 and increased orbital flow velocities up to 25 cm s–1. Seedling adhesion strength ranged from 3.92 to 29.42 N. Results of the present study corroborate the hypothesis that substrate complexity at scales relevant to the size of propagules is a crucial feature for P. oceanica seedling establishment. The intensity of unidirectional and oscillatory flow that seedlings can withstand without being dislodged assessed in this study support the hypothesis that P. oceanica sexual propagules, once adhered to a consolidated substrate, are able to tolerate high hydrodynamic stress. The results of the present study contribute to re-evaluation of the habitat requirements of P. oceanica, assessing the range of hydrodynamic conditions that this species can tolerate during the early stages of its life history.


2020 ◽  
Vol 9 (1) ◽  
pp. 14
Author(s):  
Gianluca Zitti ◽  
Nico Novelli ◽  
Maurizio Brocchini

Over the last decades, the aquaculture sector increased significantly and constantly, moving fish-farm plants further from the coast, and exposing them to increasingly high forces due to currents and waves. The performances of cages in currents and waves have been widely studied in literature, by means of laboratory experiments and numerical models, but virtually all the research is focused on the global performances of the system, i.e., on the maximum displacement, the volume reduction or the mooring tension. In this work we propose a numerical model, derived from the net-truss model of Kristiansen and Faltinsen (2012), to study the dynamics of fish farm cages in current and waves. In this model the net is modeled with straight trusses connecting nodes, where the mass of the net is concentrated at the nodes. The deformation of the net is evaluated solving the equation of motion of the nodes, subjected to gravity, buoyancy, lift, and drag forces. With respect to the original model, the elasticity of the net is included. In this work the real size of the net is used for the computation mesh grid, this allowing the numerical model to reproduce the exact dynamics of the cage. The numerical model is used to simulate a cage with fixed rings, based on the concept of mooring the cage to the foundation of no longer functioning offshore structures. The deformations of the system subjected to currents and waves are studied.


Wear ◽  
2022 ◽  
pp. 204241
Author(s):  
Karuppasamy Pandian Marimuthu ◽  
Uihwan Jeong ◽  
Jungmoo Han ◽  
Giyeol Han ◽  
Hyungyil Lee

Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 815
Author(s):  
Eliana Vieira ◽  
Joana Figueira ◽  
Ana Lucia Pires ◽  
José Grilo ◽  
Manuel Fernando Silva ◽  
...  

The influence of substrate type in boosting thermoelectric properties of co-evaporated Bi2Te3 and Sb2Te3 films (with 400 nm-thick) is here reported. Optimized power factor values are 2.7 × 10−3 W K−2 m−1 and 1.4 × 10−3 W K−2 m−1 for flexible Bi2Te3 and Sb2Te3 films, respectively. This is an important result as it is at least 2 times higher than the power factor found in the literature for flexible Bi2Te3 and Sb2Te3 films. A flexible infrared thermopile sensor was developed with high detectivity (2.50 × 107 cm √HzW−1).


1994 ◽  
Vol 29 (1-2) ◽  
pp. 363-372 ◽  
Author(s):  
Virginia R. Stovin ◽  
Adrian J. Saul

Although storage tanks provide an effective means of reducing the magnitude and frequency of combined sewer overflow discharges, and thereby of alleviating urban watercourse pollution, poorly designed storage structures frequently suffer from maintenance problems arising from sedimentation. The development of design guidelines that optimise the self-cleansing operation of storage structures is clearly a priority for urban drainage research. This paper describes a system that has been developed to study sediment deposition in laboratory model-scale storage structures. The patterns of deposition resulting from a selection of flow regimes are described, and the need for time-varying and time series storm tests is highlighted. Sedimentation patterns are shown to predominantly depend on the flow field, and the critical bed shear stresses for deposition and erosion in the model situation are identified. Hence, the potential application of numerical models to the design problem is discussed.


2017 ◽  
Vol 29 (2) ◽  
pp. 189-198 ◽  
Author(s):  
Małgorzata Maślanka ◽  
Renata Magdziarz

AbstractThis study was conducted to investigate the effect of various horticultural substrates (compost, peat-coconut, peat TS1, flower soil, lowmoor peat) and a foliar spray of chlormequat (at a concentration of 1380 mg dm-3) on the growth and flowering of the marigold cultivars belonging to two species: Tagetes erecta - ʻMarvel Mixtureʼ and ʻTaishan Orangeʼ, and Tagetes patula - ʻDurango Redʼ and ʻBonanza Flameʼ. The obtained results show that the plants grown in peat TS1 and peat-coconut were taller, had longer internodes and leaves, and thicker stems than the plants grown in the other substrates. Chlormequat significantly reduced the height of ʻMarvel Mixtureʼ (in peat TS1), ʻTaishan Orangeʼ (in lowmoor peat) and ‘Bonanza Flameʼ (in peat-coconut). The use of chlormequat also accelerated the development of flower heads in ʻTaishan Orangeʼ (in lowmoor peat).


Author(s):  
Lars C. Gansel ◽  
Siri Rackebrandt ◽  
Frode Oppedal ◽  
Thomas A. McClimans

This study explores the average flow field inside and around stocked Atlantic salmon (Salmo salar L.) fish cages. Laboratory tests and field measurements were conducted to study flow patterns around and through fish cages and the effect of fish on the water flow. Currents were measured around an empty and a stocked fish cage in a fjord to verify the results obtained from laboratory tests without fish and to study the effects of fish swimming in the cage. Fluorescein, a nontoxic, fluorescent dye, was released inside a stocked fish cage for visualization of three-dimensional flow patterns inside the cage. Atlantic salmon tend to form a torus shaped school and swim in a circular path, following the net during the daytime. Current measurements around an empty and a stocked fish cage show a strong influence of fish swimming in this circular pattern: while most of the oncoming water mass passes through the empty cage, significantly more water is pushed around the stocked fish cage. Dye experiments show that surface water inside stocked fish cages converges toward the center, where it sinks and spreads out of the cage at the depth of maximum biomass. In order to achieve a circular motion, fish must accelerate toward the center of the cage. This inward-directed force must be balanced by an outward force that pushes the water out of the cage, resulting in a low pressure area in the center of the rotational motion of the fish. Thus, water is pulled from above and below the fish swimming depth. Laboratory tests with empty cages agree well with field measurements around empty fish cages, and give a good starting point for further laboratory tests including the effect of fish-induced currents inside the cage to document the details of the flow patterns inside and adjacent to stocked fish cages. The results of such experiments can be used as benchmarks for numerical models to simulate the water flow in and around net pens, and model the oxygen supply and the spreading of wastes in the near wake of stocked fish farms.


Author(s):  
M Walsh ◽  
T McGloughlin ◽  
D W Liepsch ◽  
T O'Brien ◽  
L Morris ◽  
...  

The objective of this investigation was to assess the use of experimentally estimated wall shear stresses to validate numerically predicted results. The most commonly cited haemodynamic factor implicated in the disease initiation and proliferation processes at graft/artery junctions is wall shear stress (WSS). WSS can be determined from the product of the viscosity of the fluid and the wall shear rate. Numerically, the wall shear rate is predicted using velocity values stored in the computational cell near the wall and assuming zero velocity at the wall. Experimentally, the wall shear rate is estimated by applying a curve-fit to near-wall velocity measurements and evaluating the shear rate at a specific distance from the wall. When estimating the wall shear rate from the laser Doppler anemometry (LDA) point velocity measurements, large differences between the experimentally estimated and numerically predicted WSSs were introduced. It was found that the estimated WSS distributions from the experimental results are highly dependent on the curve-fitting method used to calculate the wall shear rate. However, the velocity profiles for both the experimental and numerical investigations show extremely good comparison. It is concluded that numerical models should be validated using unprocessed LDA point velocity measurement and not estimated WSS values.


Author(s):  
Triona Campbell ◽  
Reena Cole ◽  
Mark Davies ◽  
Michael O’Donnell

The distal junction of a femoral or femoropopliteal artery bypass graft has a predilection for failure due to restenosis. However neither the initiation nor proliferation process of atherosclerotic plaque is completely understood. Presently it is hypothesized that the process of atherosclerosis initiates as a result of damage or ‘insult’ to the endothelium. The cause of this initial damage is unknown, although it is widely believed that wall shear stresses are a contributing factor. The primary cause of plaque proliferation has not yet been identified, however it is our belief that intramural pressure plays a significant role. In this study numerical models of the proximal and distal junctions were used to determine both the location and magnitude of the stresses caused by intramural pressure. The simulated artery bypass graft was examined under both static and dynamic conditions.


Author(s):  
Lars Gansel ◽  
Thomas A. McClimans ◽  
Dag Myrhaug

The average flow field inside and around the bottom of porous cylinders in a uniform flow is explored using Particle Image Velocimetry (PIV). Tests were conducted on six cylinders with porosities of 0%, 30%, 60%, 75%, 82% and 90% in a flume tank where the flow field inside and around the models is time averaged over 180 seconds. The models had a height-to-diameter ratio of 3 and were made from metal mesh. The Reynolds numbers ranged from 5,000 to 20,000 based on the diameter of the models and from 75 to 300 based on the diameter of individual strands of the mesh, which corresponds to the Reynolds numbers occurring at salmon fish cage netting used along the Norwegian coast. The porosities of 82%, 75% and 60% correspond to those of a fish cage netting in Norwegian Salmon farming with no, light and heavy biofouling, respectively. The results from this study are discussed with respect to the instantaneous flow field in and around the same cylinders at identical Reynolds numbers. The focus is on the effect of porosity on the ventilation inside the cages and the vertical transports within the near wake. It is shown that heavy fouling of aquacultural nettings can lead to internal circulation inside fish cages and therefore has the potential to reduce the ventilation of the net pens dramatically. The description of the time-averaged flow field inside and around porous cylinders can be used as benchmarks to validate and adjust numerical models of the flow past porous cylinders. The results from this study can be valuable also for the fish farming industry, as bio-fouling and the reduced porosity of fish cages can be monitored and controlled directly by fish farmers.


Sign in / Sign up

Export Citation Format

Share Document