scholarly journals Immunity – a Significant Pathogenic Factor as Well as an Integral Part of the Psychoneuroendocrine-Immune Regulations

2018 ◽  
pp. 165-173
Author(s):  
F. Vožeh

Immunity plays an important role in the reactivity of the organism and, in this context, is an essential factor in the pathogenesis of many diseases. Basically, there is no system or organ in the body, whose dysfunction is not related to immunity consequences. In addition, there are also multisystem diseases simultaneously involving multiple body systems. They are not always caused by weak immunity, but also often by modified immune reactions known as overshooting. The essence of all these diseases is a change in the reactivity of the organism where immunity plays an important role. The immunity as such is then part of the systems of neuroendocrine-immune regulation, which have common mediators and receptors. The establishment of psychoneuroimmunology, a relatively new discipline in neuroscience, contributed to a detailed understanding of these mechanisms between central and peripheral nervous system, the endocrine system and the immune system. This research enabled the uncovering of the nature of stress-diseases and impact of other regulatory disturbances on the function of various body organs and systems of the organism as a whole. The aim of this short review is to show complex interconnections of these relationships to better understand the human health and disease.

Author(s):  
Georgia E. Hodes

In the late 20th century, the discovery that the immune system and central nervous system were not autonomous revolutionized exploration of the mechanisms by which stress contributes to immune disorders and immune regulation contributes to mental illness. There is increasing evidence of stress as integrated across the brain and body. The immune system acts in concert with the peripheral nervous system to shape the brain’s perception of the environment. The brain in turn communicates with the endocrine and immune systems to guide their responses to that environment. Examining the groundwork of mechanisms governing communication between the body and brain will hopefully provide a better understanding of the ontogeny and symptomology of some mood disorders.


Today, doctors are faced with a new type of pathology - premature (or accelerated) aging. The symptoms are the same everywhere - exhaustion and slow destruction of vital systems of the body: the immune system, endocrine system, nervous system, cardiovascular system, reproductive system, visual system.


Author(s):  
Martin Luck

What is a hormone? ‘How hormones work’ defines a hormone as a chemical signal which enables an event in one part of the body to have an effect somewhere else. Hormones make up one of the two great physiological control systems—the other being the nervous system—which keep the functions of the body working together. There are strong, multifunctional connections between the nervous and endocrine systems. As well as only operating inside the body, hormones are affected by internal stimuli and by external events detected by the senses. The endocrine system comprises several interlinked sub-systems, including five main axes centred on the hypothalamic and anterior pituitary gland. The processes of hormone transport and action through these systems are described.


2020 ◽  
pp. 96-122
Author(s):  
David Musnick ◽  
Shae Datta

Millions of Americans suffer from traumatic brain injuries and concussion each year. It used to be thought that recovery from a noncomplicated concussion was quick and easy. However, recent research has shown that multiple physiological mechanisms may result from a single impact to the head, and worsen with subsequent injuries. Head injuries have been shown to affect different systems of the body, including the endocrine system, the immune system, and maintenance of the gastrointestinal microbiome. This chapter will review these mechanisms, the sequelae of head injury, and the importance of conducting a thorough evaluation. Integrative methods of treatment and management will be discussed.


2019 ◽  
Vol 26 (1) ◽  
Author(s):  
Alejandro Quintero-Villegas ◽  
Sergio Iván Valdés-Ferrer

AbstractIn mammalians, serotonin (5-HT) has critical roles in the central nervous system (CNS), including mood stability, pain tolerance, or sleep patterns. However, the vast majority of serotonin is produced by intestinal enterochromaffin cells of the gastrointestinal tract and circulating blood platelets, also acting outside of the CNS. Serotonin effects are mediated through its interaction with 5-HT receptors (5-HTRs), a superfamily with a repertoire of at least fourteen well-characterized members. 5-HT7 receptors are the last 5-HTR member to be identified, with well-defined functions in the nervous, gastrointestinal, and vascular systems. The effects of serotonin on the immune response are less well understood. Mast cells are known to produce serotonin, while T cells, dendritic cells, monocytes, macrophages and microglia express 5-HT7 receptor. Here, we review the known roles of 5-HT7 receptors in the immune system, as well as their potential therapeutic implication in inflammatory and immune-mediated disorders.


2020 ◽  
Vol 21 (23) ◽  
pp. 8899
Author(s):  
Sandor Haas-Neill ◽  
Paul Forsythe

The discovery of the microbiota-gut-brain axis has revolutionized our understanding of systemic influences on brain function and may lead to novel therapeutic approaches to neurodevelopmental and mood disorders. A parallel revolution has occurred in the field of intercellular communication, with the realization that endosomes, and other extracellular vesicles, rival the endocrine system as regulators of distant tissues. These two paradigms shifting developments come together in recent observations that bacterial membrane vesicles contribute to inter-kingdom signaling and may be an integral component of gut microbe communication with the brain. In this short review we address the current understanding of the biogenesis of bacterial membrane vesicles and the roles they play in the survival of microbes and in intra and inter-kingdom communication. We identify recent observations indicating that bacterial membrane vesicles, particularly those derived from probiotic organisms, regulate brain function. We discuss mechanisms by which bacterial membrane vesicles may influence the brain including interaction with the peripheral nervous system, and modulation of immune activity. We also review evidence suggesting that, unlike the parent organism, gut bacteria derived membrane vesicles are able to deliver cargo, including neurotransmitters, directly to the central nervous system and may thus constitute key components of the microbiota-gut-brain axis.


2018 ◽  
Vol 98 (1) ◽  
pp. 477-504 ◽  
Author(s):  
Robert Dantzer

Because of the compartmentalization of disciplines that shaped the academic landscape of biology and biomedical sciences in the past, physiological systems have long been studied in isolation from each other. This has particularly been the case for the immune system. As a consequence of its ties with pathology and microbiology, immunology as a discipline has largely grown independently of physiology. Accordingly, it has taken a long time for immunologists to accept the concept that the immune system is not self-regulated but functions in close association with the nervous system. These associations are present at different levels of organization. At the local level, there is clear evidence for the production and use of immune factors by the central nervous system and for the production and use of neuroendocrine mediators by the immune system. Short-range interactions between immune cells and peripheral nerve endings innervating immune organs allow the immune system to recruit local neuronal elements for fine tuning of the immune response. Reciprocally, immune cells and mediators play a regulatory role in the nervous system and participate in the elimination and plasticity of synapses during development as well as in synaptic plasticity at adulthood. At the whole organism level, long-range interactions between immune cells and the central nervous system allow the immune system to engage the rest of the body in the fight against infection from pathogenic microorganisms and permit the nervous system to regulate immune functioning. Alterations in communication pathways between the immune system and the nervous system can account for many pathological conditions that were initially attributed to strict organ dysfunction. This applies in particular to psychiatric disorders and several immune-mediated diseases. This review will show how our understanding of this balance between long-range and short-range interactions between the immune system and the central nervous system has evolved over time, since the first demonstrations of immune influences on brain functions. The necessary complementarity of these two modes of communication will then be discussed. Finally, a few examples will illustrate how dysfunction in these communication pathways results in what was formerly considered in psychiatry and immunology to be strict organ pathologies.


2020 ◽  
pp. 44-49
Author(s):  
Maqsuduulah Mujtahid

Regulation and coordination of different body organs is important in multicellular organisms. Hormones and the nervous system participate in this synchronization. Hormones are the compounds and chemical messengers produced by cells, glands, or special tissues called the endocrine system and released into the bloodstream. In addition to the hormones, blood is consist of proteins, sugars, lipids, vitamins, etc. Blood sugar is glucose which produces energy in the body. Regular blood glucose levels vary at different ages and exceed 120-170 mg / dl. It is harmful and even fatal to increase or decrease it from the normal level, so the concentration of glucose dissolved in plasma was subject to tight regulation and various regulatory mechanisms were developed thereon. Hormones cortisol, glucagon, adrenaline, and glucocorticoids are the major regulators. These substances are tracked regularly to prevent blood glucose from rising and dropping. Insulin consists of hyperglycemia, as well as other hormones. The mechanism by which it affects the metabolism of the food (carbohydrates, lipids, proteins) prevents hypoglycemia in several respects.


Author(s):  
Anil Gupta

Functional foods contain bioactive compounds which are endowed with remarkable biologically significant properties. These compounds have corrective and preventive potential for diseases affecting cardiovascular system, endocrine system, nervous system, alimentary canal by virtue of their capability to influence bio-macromolecules in the cells. Clinical evidence augments the anti-oxidant, anti-atherogenic, anti-ageing, cardio-protective and immune system modulatory role of the functional foods. However, additional research is necessitated to uncover concerns regarding optimal dose, duration, pharmaco-therapeutics and adverse effects of active compounds in relation to the public health.


Author(s):  
Haozhe Wang ◽  
Jaime P. P. Foong ◽  
Nicola L. Harris ◽  
Joel C. Bornstein

AbstractThe enteric nervous system (ENS) of the gastrointestinal (GI) tract interacts with the local immune system bidirectionally. Recent publications have demonstrated that such interactions can maintain normal GI functions during homeostasis and contribute to pathological symptoms during infection and inflammation. Infection can also induce long-term changes of the ENS resulting in the development of post-infectious GI disturbances. In this review, we discuss how the ENS can regulate and be regulated by immune responses and how such interactions control whole tissue physiology. We also address the requirements for the proper regeneration of the ENS and restoration of GI function following the resolution of infection.


Sign in / Sign up

Export Citation Format

Share Document