scholarly journals Influence of toxic enophyte-infected tall fescue on the prevalence of E. coli 0157:H7 from ruminants, a review

2007 ◽  
Vol 13 ◽  
pp. 87-89
Author(s):  
M.L. Looper ◽  
T.S. Edrington ◽  
T.R. Callaway ◽  
R. Flores ◽  
G.E. Aiken ◽  
...  

Ruminants consuming toxic endophyte-infected (E+) tall fescue are exposed to ergot alkaloids that usually result in a malady of problems identified as fescue toxicosis. Grazing studies investigating the effects of E+ tall fescue on the prevalence of E. coli O157:H7 from naturally-infected cattle have not been consistent. Further, in vitro studies with selected ergot alkaloids did not affect growth of E. coli O157:H7. Dietary stressors usually associated with E+ tall fescue consumption did result in increased faecal shedding of E. coli O157:H7 from sheep experimentally-inoculated. Animal species, animal model (naturally vs experimentally-infected), environmental conditions, type of diet, and length of exposure to E+ tall fescue may influence the association between grazing E+ tall fescue and E. coli O157:H7 shedding. A better understanding of how E+ tall fescue influences shedding of E. coli O157:H7 from ruminants will aid in the development of management strategies for onfarm pathogen control. Keywords: cattle, E. coli O157:H7, sheep, tall fescue

2007 ◽  
Vol 13 ◽  
pp. 383-385
Author(s):  
J.L. Klotz ◽  
B.H. Kirch ◽  
G.E. Aiken ◽  
L.P. Bush ◽  
B.C. Arrington ◽  
...  

Vasoconstriction is one response associated with consumption of toxic endophyte-infected tall fescue. Because it is not known if endophyte-produced alkaloids act alone or collectively, the objective of this study was to examine the vasoconstrictive potentials of D-lysergic acid, ergovaline, and N-acetylloline individually or in paired combinations using bovine lateral saphenous veins biopsied from fescue naïve cattle. Segments (2- 3 cm) of vein were surgically biopsied from healthy Brahmaninfluenced yearling cattle (n=22; 330 ± 8 kg). The data indicated that ergovaline is a more potent vascular toxicant than lysergic acid and N-acetylloline. Further, the presence of N-acetylloline did not inhibit or potentiate the effects of the ergot alkaloids on vascular activity. The contractile responses of the remaining combinations did appear to differ from the individual concentration responses. This supports the possibility that a combinatorial or repetitive alkaloid exposure effect may exist in vivo and should be considered during in vitro evaluations of ergot alkaloids. Keywords: fescue-naïve cattle, fescue toxicosis, vasoconstriction


2005 ◽  
Vol 73 (9) ◽  
pp. 6005-6016 ◽  
Author(s):  
Francis Girard ◽  
Isabelle Batisson ◽  
Gad M. Frankel ◽  
Josée Harel ◽  
John M. Fairbrother

ABSTRACT The ileal in vitro organ culture (IVOC) model using tissues originating from colostrum-deprived newborn piglets has proven to be an effective way to study the attaching and effacing (A/E) phenotype of porcine enteropathogenic Escherichia coli (EPEC) ex vivo. The aim of this study was to investigate the role of intimin subtype and Tir in the adherence of EPEC and Shiga-toxin-producing E. coli (STEC), isolated from different animal species, to porcine intestinal IVOC. Moreover, the role of intimin in Tir-independent adherence of the human EPEC strain E2348/69 was investigated using intimin and Tir-deficient derivatives. Our results demonstrated that A/E E. coli strains (AEEC) from various animal species and humans induce the A/E phenotype in porcine ileal IVOC and that intimin subtype influences intestinal adherence and tropism of AEEC strains. We also showed that a tir mutant of EPEC strain E2348/69 demonstrates close adherence to the epithelial cells of porcine ileal IVOC segments, with microvillous effacement but with no evidence of actin polymerization or pedestal formation, and that intimin seems to be involved in this phenotype. Overall, this study provides further evidence for the existence of one or more host-cell-encoded intimin receptor(s) in the pig gut.


2021 ◽  
Vol 99 (Supplement_2) ◽  
pp. 40-41
Author(s):  
Mohan Acharya ◽  
Joan M Burke ◽  
Erin Wood ◽  
Yan Huang ◽  
Palika Dias Morse ◽  
...  

Abstract Objective was to examine the activity of cytochrome P450 (CYP), a liver enzyme that metabolizes ergot alkaloids which is hindered by this fescue toxin, as an indicator of fescue toxicosis in sheep. In spring and fall, ewes were blocked by age and BW, and randomly assigned to 1 kg/ewe/d of endophyte-infected (E+; 61% of diet in fall, 13% of diet in spring; 0.8 µg/g of ergovaline; and soy hulls, alfalfa pellets, cottonseed hulls, molasses) or non-infected (E-; same proportion of E+/season and same feeds) tall fescue seed supplement (n = 10/diet in each season) for 28 d, plus hay, mineral and water. Ewes were exposed to teaser, d -21 to 0, and intact rams, d 0 (first day of diet) to 30. Rectal temperature (RT), serum concentration of prolactin (using RIA), and CYP were determined every 7–14 d between d 0–28, and pregnancy status on d 56. PromegaTM P450-Glo assay was used to determine CYP from serum. Data were analyzed by using PROC MIXED with repeated measures (SAS). Rectal temperature of E+ compared with E- ewes was elevated on at least one day in fall and spring (diet × season × d, P < 0.001). Serum prolactin was lower in E+ compared with E- ewes (diet × d, P < 0.001) and lower in fall (P < 0.001). CYP was higher in E- ewes on d 28 in fall (diet × season × d, P = 0.008), but otherwise similar between diets, and higher in fall than spring (P < 0.001). There was an unexpected negative correlation between CYP and prolactin (R = -0.24; P < 0.009), but there appears to be a subpopulation of ewes with low prolactin and lower CYP. CYP activity in sera may not be a marker for fescue toxicosis in ewes.


2007 ◽  
Vol 13 ◽  
pp. 357-361
Author(s):  
A.A. Bacetty ◽  
M.E. Snook ◽  
A.E. Glenn ◽  
C.W. Bacon ◽  
P. Nagabhyru ◽  
...  

Biotypes of the Neotyphodium coenophialum-tall fescue grass symbiota are provided with enhanced protection from grazing vertebrate herbivores due to the production of toxic secondary metabolites. However, considerable controversy exists concerning this symbiotum and its toxicity to nematode species. A sterile in vitro system was developed to determine the interactive nature of known toxins specific to this mutualistic association and compounds within grass extracts known to be nematotoxic. The in vitro assay used Pratylenchus scribneri, the lesion nematode, as the target organism to determine the interactive nature of ergot alkaloids, the pyrrolizidine alkaloid (the lolines), total phenolic fractions, and specific phenolic compounds. The in vitro assay is described along with methods for testing toxicity. The results indicate that only two of three ergot alkaloids were toxic to P. scribneri, and there were possible potentiating or synergistic effects with other alkaloids and water soluble polyphenolics. HPLC analysis and UV mass spectrometry of root extracts revealed the presence of two major polyphenolics, chlorogenic and di-caffeoylquinic acids, both of which are natural constituents of this and other plants and have known toxicity to several species of nematodes. Further, it was determined that there were quantitative differences between the total phenolic and specific phenolic contents in roots of endophyte infected and noninfected tall fescue, cultivar Jesup. This in vitro assay offers a rapid and routine screen for acute testing chemical components of the tall fescue-endophyte symbiotum for toxicity to this nematode species. Keywords: Chlorogenic acid, di-caffeoylquinic acids, ergot alkaloid, lolines, nematode, polyphenolics, Pratylenchus scribneri, pyrrolizidine alkaloid


Author(s):  
C.J. Botha ◽  
T.W. Naude ◽  
M.L. Moroe ◽  
G.E. Rottinghaus

The 1st outbreak of fescue toxicosis in South Africa was recently confirmed in a Brahman herd at Perdekop, near Standerton, in Mpumalanga province, SouthAfrica.Within 3 weeks of being placed on a fescue pasture in mid-winter, 50 of 385 cattle developed lameness and / or necrosis of the tail. The farmer had established Festuca elatior L. (tall fescue, Iewag variety) on c. 140 ha for winter grazing. Fescue may be infected by an endophyte, Neotyphodium coenophialum, which produces ergot alkaloids, in particular ergovaline. Ergovaline concentrations in basal leaf sheaths and grass stems collected during the outbreak ranged from 1720-8170 ppb on a dry-matter basis.


2019 ◽  
Vol 97 (Supplement_1) ◽  
pp. 5-6
Author(s):  
Johnny R Rogers ◽  
Matthew H Poore ◽  
Sam Ingram ◽  
Deidre Harmon

Abstract In 2018, a series of 4 on-farm demonstrations were conducted using a metsulfuron herbicide for tall fescue (Lolium arundinaceum) seedhead suppression to increase producer awareness of this practice. Chaparral© herbicide was applied prior to the boot stage (April 5–April 21, 2018) and the design was an unreplicated field with side by side treated and untreated areas. Forage samples were taken to determine yield, nutritive value, species composition and ergovaline level. Treatment with Chaparral© increased crude protein (12.1 vs. 14.2%) while reducing yield (5477 vs. 3738 kg/ha) and tall fescue seedhead proportion (42.8 vs. 25.4%) (P < 0.05). Total digestible nutrients tended to be higher (57.2 vs 59.2%, P = 0.08) and ergovaline level tended to be lower (901 vs. 491 ppb, P = 0.11) with treatment. Workshops were held to report the demonstration results. Total workshop registration was 147 with 91 evaluations completed. Participants were 78% male and 22% female with 65% being over the age 50. The pasture hectares grazed by participants was 4253 with 1415 ha as hay. Attendee’s livestock inventories were 6357 beef cattle, 105 sheep, 66 goats and 70 horses. Post-workshop evaluation indicated that 100% of attendees increased understanding of fescue toxicosis, management strategies to reduce fescue toxicity and of using metsulfuron for seedhead suppression. Evaluations completed at the conclusion of each workshop (n = 90) indicated satisfaction with (scale of 1 = not satisfied to 4 = very satisfied, mean ± SD): instructors’ knowledge (3.86 ± 0.34), workshop environment/format (3.83 ± 0.37), and overall quality (3.82 ± 0.41). One hundred percent indicated that this workshop met their expectations and they would recommend it to others. Producer interest and responses indicate that on farm demonstrations are an effective method for education of new production practices


2019 ◽  
Vol 85 (15) ◽  
Author(s):  
Ryan S. Mote ◽  
Nicholas S. Hill ◽  
Joseph H. Skarlupka ◽  
Zachary B. Turner ◽  
Zachary P. Sanders ◽  
...  

ABSTRACT Tall fescue, the predominant southeastern United States cool-season forage grass, frequently becomes infected with an ergot alkaloid-producing toxic endophyte, Epichloë coenophialum. Consumption of endophyte-infected fescue results in fescue toxicosis (FT), a condition that lowers beef cow productivity. Limited data on the influence of ergot alkaloids on rumen fermentation profiles or ruminal bacteria that could degrade the ergot alkaloids are available, but how FT influences the grazing bovine fecal microbiota or what role fecal microbiota might play in FT etiology and associated production losses has yet to be investigated. Here, we used 16S rRNA gene sequencing of fecal samples from weaned Angus steers grazing toxic endophyte-infected (E+; n = 6) or nontoxic (Max-Q; n = 6) tall fescue before and 1, 2, 14, and 28 days after pasture assignment. Bacteria in the Firmicutes and Bacteroidetes phyla comprised 90% of the Max-Q and E+ steer fecal microbiota throughout the trial. Early decreases in the Erysipelotrichaceae family and delayed increases of the Ruminococcaceae and Lachnospiraceae families were among the major effects of E+ grazing. E+ also increased abundances within the Planctomycetes, Chloroflexi, and Proteobacteria phyla and the Clostridiaceae family. Multiple operational taxonomic units classified as Ruminococcaceae and Lachnospiraceae were correlated negatively with weight gains (lower in E+) and positively with respiration rates (increased by E+). These data provide insights into how E+ grazing alters the Angus steer microbiota and the relationship of fecal microbiota dynamics with FT. IMPORTANCE Consumption of E+ tall fescue has an estimated annual $1 billion negative impact on the U.S. beef industry, with one driver of these costs being lowered weight gains. As global agricultural demand continues to grow, mitigating production losses resulting from grazing the predominant southeastern United States forage grass is of great value. Our investigation of the effects of E+ grazing on the fecal microbiota furthers our understanding of bovine fescue toxicosis in a real-world grazing production setting and provides a starting point for identifying easy-to-access fecal bacteria that could serve as potential biomarkers of animal productivity and/or FT severity for tall fescue-grazing livestock.


Toxins ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 796
Author(s):  
Daniel H. Poole ◽  
Kyle J. Mayberry ◽  
McKayla Newsome ◽  
Rebecca K. Poole ◽  
Justine M Galliou ◽  
...  

Fescue toxicosis is a multifaceted syndrome common in cattle grazing endophyte-infected tall fescue; however, varying symptomatic responses potentially imply genetic tolerance to the syndrome. It was hypothesized that a subpopulation of animals within a herd would develop tolerance to ergot alkaloid toxicity. Therefore, the goals of this study were to develop selection criteria to identify tolerant and susceptible animals within a herd based on animal performance, and then examine responsive phenotypic and cytokine profiles to fescue toxicosis. Angus cows grazed endophyte-infected tall fescue at two locations for 13 weeks starting in mid-April 2016. Forage measurements were collected to evaluate ergot alkaloid exposure during the study. A post hoc analysis of animal performance was utilized to designate cattle into either tolerant or susceptible groups, and weekly physiological measurements and blood samples were collected to evaluate responses to chronic exposure to endophyte-infected tall fescue. Findings from this study support the proposed fescue toxicosis selection method formulated herein, could accurately distinguish between tolerant and susceptible animals based on the performance parameters in cattle chronically exposed to ergot alkaloids, and provides evidence to warrant additional analysis to examine the impact of ergot alkaloids on immune responsiveness in cattle experiencing fescue toxicosis.


2016 ◽  
Vol 30 (1) ◽  
pp. 171-180 ◽  
Author(s):  
Trevor D. Israel ◽  
Gary E. Bates ◽  
Thomas C. Mueller ◽  
John C. Waller ◽  
G. Neil Rhodes

Most tall fescue in the United States is infected with a fungal endophyte which imparts certain advantages to the plant, such as drought tolerance, insect feeding deterrence, and enhanced mineral uptake. However, the endophyte also produces ergot alkaloids that are harmful to livestock and contribute to fescue toxicosis. Because the alkaloids are concentrated in seed and stems, a potential way to reduce the likelihood of fescue toxicosis is by suppressing seedhead formation with herbicides. Research was conducted from 2012 to 2014 using metsulfuron applied alone and in combination with other herbicides in spring to determine the growth response of tall fescue, effects on forage quality, and ergot alkaloid concentration. Clipping or metsulfuron applied alone or in combination with aminocyclopyrachlor or aminopyralid reduced seedhead density by 36 to 55% compared to the nontreated control. Treatments containing metsulfuron reduced spring harvest yield 35 to 61%, but no differences were observed in the summer or year-after harvests. The same treatments increased crude protein levels by 1.03 to 2.14% and reduced acid detergent fiber levels by 1.60 to 2.76% compared to the nontreated control at spring harvest. Treatments containing metsulfuron reduced ergot alkaloid concentration 26 to 34% at the spring harvest, but no differences were observed in summer-harvested forage. Results from this study indicate metsulfuron applied alone or in combination with aminocyclopyrachlor or aminopyralid can potentially reduce the severity of fescue toxicosis and improve forage quality.


Sign in / Sign up

Export Citation Format

Share Document