scholarly journals Emerging Role of Aurora A in Radioresistance: A Comprehensive Review

EMJ Oncology ◽  
2021 ◽  
pp. 81-90
Author(s):  
Salini Das ◽  
Elizabeth Mahapatra ◽  
Souvick Biswas ◽  
Madhumita Roy ◽  
Sutapa Mukherjee

Radiotherapy is one of the most conventional modes of treatment in several cancers. Failure of radiotherapy followed by acquisition of radioresistance is one of the emerging challenges faced by clinical experts. Unusual expression and functional implications of several molecules are observed to facilitate radioresistance. Aurora A, a member of the Aurora kinase (serine/threonine kinase) family, is one such molecule that shows significantly altered expression as well as non-canonical functional crosstalk with other associated factors (cell cycle regulators, signaling molecules, stemness markers, etc.) to favour the adaptations for the acquirement of radioresistance. These mechanisms include progression of cell cycle, stimulatory activation of factors by phosphorylation for enhancing the chance of cellular survivability, and prevention of apoptosis. This review article summarises how Aurora A is responsible for radioresistance in cancer and why this kinase should be considered a negative biomarker of radiosensitivity. This review discloses a wider opportunity in the field of research to find the mechanistic key regulatory pathway of Aurora A, which can be a potential target for enhancing the efficiency of treatment. Further investigations are required to explore the potential of Aurora A inhibitors as reliable radiosensitisers.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Abeer K. Shaalan ◽  
Tathyane H. N. Teshima ◽  
Abigail S. Tucker ◽  
Gordon B. Proctor

AbstractLittle is known about the key molecules that regulate cell division during organogenesis. Here we determine the role of the cell cycle promoter aurora kinase B (AURKB) during development, using embryonic salivary glands (E-SGs) as a model. AURKB is a serine/threonine kinase that regulates key events in mitosis, which makes it an attractive target for tailored anticancer therapy. Many reports have elaborated on the role of AURKB in neoplasia and cancer; however, no previous study has shown its role during organ development. Our previous experiments have highlighted the essential requirement for AURKB during adult exocrine regeneration. To investigate if AURKB is similarly required for progression during embryonic development, we pharmacologically inhibited AURKB in developing submandibular glands (SMGs) at embryonic day (E)13.5 and E16.5, using the highly potent and selective drug Barasertib. Inhibition of AURKB interfered with the expansion of the embryonic buds. Interestingly, this effect on SMG development was also seen when the mature explants (E16.5) were incubated for 24 h with another cell cycle inhibitor Aphidicolin. Barasertib prompted apoptosis, DNA damage and senescence, the markers of which (cleaved caspase 3, γH2AX, SA-βgal and p21, respectively), were predominantly seen in the developing buds. In addition to a reduction in cell cycling and proliferation of the epithelial cells in response to AURKB inhibition, Barasertib treatment led to an excessive generation of reactive oxygen species (ROS) that resulted in downregulation of the acinar differentiation marker Mist1. Importantly, inhibition of ROS was able to rescue this loss of identity, with Mist1 expression maintained despite loss of AURKB. Together, these data identify AURKB as a key molecule in supporting embryonic development and differentiation, while inhibiting senescence-inducing signals during organogenesis.


2017 ◽  
Vol 4 (4) ◽  
pp. 1380 ◽  
Author(s):  
Jiahai Chen ◽  
Xiaoli Yang

Background: Hepatocellular carcinoma (HCC) is one of the most frequent malignant tumors. The objective was to investigate the role of serine/threonine kinase Pim-2 in apoptosis signal transduction pathway, because there is little study about its contribution to apoptosis in hepatocellular carcinoma.Methods: The Pim-2 gene and protein expression were examined by qRT-PCR, Western blot and immunohistochemical stain in HCC tissues and normal liver tissues. The plasmid pCI-neo-Pim2 was transfected into human hepatoma cell line SMMC7721 by lipofectamine. Total RNAs were extracted from SMMC7721 cell in logarithm growth phase. The mRNA expression of Pim-2, Akt-1 (protein kinase B), 4E-BP1 (translation repressor of mammalian target of rapamycln), SOCS-1 (repressor of cytokine), Bad(Bcl-xL/Bcl-2 associated death promoter, Bim(Bc1-2 interacting mediator of cell death)and Puma (p53 upregulated modulator of apoptosis) were identified by qRT-PCR. The cell cycle of post-transfected SMMC7721 cells was assessed by flow cytometry.Results: Pim-2 expression was enhanced in HCC. In post-transfected SMMC7721 cells, Pim-2 mRNA expression was up-regulated, level of Bad mRNA was attenuated, furthermore, the transcription level of Akt-1, SOCS-1, 4E-BP1, Bim and Puma gene wasn’t variety. Up-graulated Pim-2 can’t cause distinct change of cell cycle or apoptosis in hepatoma cell.Conclusions: The serine/threonine kinase Pim-2 plays an import role in the development of HCC, Pim-2 dependent maintenance of cell size and survival correlated with its ability to maintain down-regulated expression of the BH3 protein Bad. Pim-2 is not a trigger in cell-autonomous survival or inhibiting apoptosis in hepatocellular carcinoma. Pim-2 is a redundancy pathway of survival signaling.


Author(s):  
Shu Li ◽  
Jinfeng Du ◽  
Haina Gan ◽  
Jinwei Chen ◽  
Yang Zhou ◽  
...  

IntroductionResveratrol, a polyphenol extracted from many plant species, has emerged as a promising pro-apoptotic agent in various cancer cells. However, the role of resveratrol in cell proliferation and apoptosis of fibroblast-like synoviocytes in rheumatoid arthritis (RA-FLS) is not fully understood. The study was aimed at elucidating the role of resveratrol in cell proliferation and apoptosis of RA-FLS and the underlying molecular mechanism.Material and methodsCultured RA-FLSs were subjected to tumour necrosis factor  (TNF-). The cell proliferation was measured by Cell Counting Kit-8 assay. Cell apoptosis and cell cycle of RA-FLSs were determined by flow cytometry. The levels of apoptosis or autophagy or cell cycle-related protein were detected by immunoblot analysis.ResultsIn our study, we confirmed that resveratrol reversed TNF- mediated cell proliferation in RA-FLS. Meanwhile, resveratrol blocked cells at the G2/M stage and reduced the ratio of S phase cells through upregulation of p53 and consequently led to apoptotic cell death. Quite interestingly, we found that resveratrol reversed TNF--induced autophagy. Inhibition of autophagy by resveratrol or autophagy inhibitor or Beclin-1 siRNA suppressed TNF- mediated cell survival and promoted cell apoptosis. However, the autophagy inducer rapamycin (RAPA) reversed the effect of resveratrol on autophagy and cell proliferation. Mechanistic studies revealed that resveratrol inhibited the activation of the phosphoinositide 3-kinases/serine-threonine kinase (PI3K/AKT) pathway. Inhibition of PI3K/AKT pathway by inhibitor LY294002 or resveratrol increased the expression of p53 and decreased the expression of cycle protein (cyclin B1), which further led to block cells in the G2/M arrest.ConclusionsOur preliminary study indicated that resveratrol may suppress RA-FLS cell survival and promote apoptosis at least partly through regulation of autophagy and the AKT-p53 axis.


Author(s):  
Amelia U. Schirmer ◽  
Lucy M. Driver ◽  
Megan T. Zhao ◽  
Carrow I. Wells ◽  
Julie E. Pickett ◽  
...  

2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Abeer A Bahnassy ◽  
Abdel Rahman N Zekri ◽  
Maha Saleh ◽  
Mohammad Lotayef ◽  
Manar Moneir ◽  
...  

1997 ◽  
Vol 45 (1) ◽  
pp. 107-118 ◽  
Author(s):  
André Nadeau ◽  
Gilles Grondin ◽  
Richard Blouin

ZPK is a recently described protein serine/threonine kinase that has been originally identified from a human teratocarcinoma cell line by the polymerase chain reaction and whose function in signal transduction has not yet been elucidated. To investigate the potential role of this protein kinase in developmental processes, we have analyzed the spatial and temporal patterns of expression of the ZPK gene in mouse embryos of different gestational ages. Northern blot analysis revealed a single mRNA species of about 3.5 KB from Day 11 of gestation onwards. In situ hybridization studies demonstrated strong expression of ZPK mRNA in brain and in a variety of embryonic organs that rely on epithelio-mesenchymal interactions for their development, including skin, intestine, pancreas, and kidney. In these tissues, the ZPK mRNA was localized primarily in areas composed of specific types of differentiating cells, and this expression appeared to be upregulated at a time concomitant with the onset of terminal differentiation. Taken together, these observations raise the possibility that the ZPK gene product is involved in the establishment and/or maintenance of a fully cytodifferentiated state in a variety of cell lineages.


Author(s):  
Novriantika Lestari

Liver fibrosis is a reversible response to a wound healing with marked accumulation of extracellular matrix which caused by injury to the liver. Liver fibrosis can be caused by various factors including alcohol and non-alcohol steatohepatitis. The process of fibrosis serves to localize the inflammation during chronic exposure. The hepatic stem cell (HSC) has a key role in the pathogenesis of liver fibrosis. The HSC activation is characterized by increased profibrogenic mediators including members of the TGF-? superfamily. In order to enable signal transduction, the mediator needs to bind to its receptors. The serine/ threonine kinase receptor is a receptor that binds to the TGF-? superfamily ligand, including TGF-?, BMP, activin and other mediators. The ligand receptor-binding activity will stimulate signal transduction that will translocate into the nucleus and phosphorylate various transcription factors that play a role in cell proliferation, differentiation, or apoptosis. There is currently no standard therapy for liver fibrosis. Based on the central role of the serine/ threonine kinase receptor in the pathogenesis of liver fibrosis, it is thought that the use of serine/ threonine kinase inhibitors is a promising therapy.


Sign in / Sign up

Export Citation Format

Share Document