scholarly journals Effect of β Phase Decomposition on Recrystallization in α-Zr Region in Zr-2.5%Nb Pressure Tube Material

2020 ◽  
Vol 58 (10) ◽  
pp. 672-679
Author(s):  
SungSoo Kim ◽  
Sang Yup Lim ◽  
Gyeong-Geun Lee

The effects of β phase decomposition on recrystallization and texture variation in Zr-2.5% Nb alloy pressure tube material were investigated. Isothermal annealing was conducted at 350 to 550 <sup>o</sup>C for 240 hours, and isothermal annealing was performed at 500 <sup>o</sup>C for 240 to 3,000 hours. The recrystallization and texture variation were analyzed by inverse pole figure variation using the XRD and EBSD methods. Annealing in α-Zr region at below 610 <sup>o</sup>C induced recrystallization and texture variation in the α-Zr. These results differ from those from a previous annealing study of the α+β region at 750-830 <sup>o</sup>C. Annealing above 400 <sup>o</sup>C for 240 hours caused β-Zr decomposition into β-Nb. The decomposition of the β-phase by annealing above 475 <sup>o</sup>C caused a contraction of 7.5% in the d(110) spacing in the β-phase, and a reduction in the volume fraction of the β phase by about 80%. It seems that the stress internally formed by the lattice contraction of the β-phase provides the driving force for recrystallization. In addition, it suggests that the newly formed α-Zr produced by β phase decomposition provides new nucleation sites for recrystallization and causes texture variation in the α-Zr. The reason why the recrystallization and the texture variation occurs only in the α-Zr stable region at below 610 <sup>o</sup>C is discussed.

2012 ◽  
Vol 706-709 ◽  
pp. 853-858 ◽  
Author(s):  
R.W.L. Fong ◽  
H. Saari ◽  
R. Miller ◽  
J. Teutsch ◽  
Sven C. Vogel

Differential scanning calorimetry (DSC) has been used to study the phase changes in samples of as-received Zr-2.5Nb pressure tube material by continuous heating and cooling. Two different heating rates (5 and 20°C/min) were used to heat the sample up to 1050°C. After a short time hold at 1050°C, all the samples were continuously cooled to 300°C at a rate of 20°C/min. On continuous heating, the DSC signals obtained showed two endothermic transitions. The low-temperature transition, occurring between about 500 and 650°C, is attributed to a thermal decomposition of metastable niobium-stabilized β-phase. The highertemperature transition, occurring between 600 and 950°C, is due to phase transformations of hcp α-Zr to bcc β-Zr, as previously confirmed in a companion study on the same pressure-tube material that was examined in-situ by neutron diffraction. The neutron diffraction results provided a positive identification of the two phases and also a quantification of the β-phase present in the sample at different heating temperatures, and thus provided a guide to extract the volume fraction of β-phase from the DSC signals obtained in this study. The DSC signals revealed only one exothermic transition which is correlated to the reverse transformation of β-Zr to α-Zr, as previously identified in the companion neutron diffraction study of the same pressure tube material.


2014 ◽  
Vol 451 (1-3) ◽  
pp. 300-312 ◽  
Author(s):  
R.V. Kulkarni ◽  
K.V. Mani Krishna ◽  
S. Neogy ◽  
D. Srivastava ◽  
E. Ramadasan ◽  
...  

2017 ◽  
Vol 489 ◽  
pp. 22-32 ◽  
Author(s):  
Gargi Choudhuri ◽  
P. Mukherjee ◽  
N. Gayathri ◽  
V. Kain ◽  
M. Kiran Kumar ◽  
...  

2013 ◽  
Vol 442 (1-3) ◽  
pp. 116-123 ◽  
Author(s):  
Matthew Gallaugher ◽  
Daniel Peykov ◽  
Nicolas Brodusch ◽  
Richard R. Chromik ◽  
Lisa Rodrigue ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 906
Author(s):  
Dong Han ◽  
Yongqing Zhao ◽  
Weidong Zeng

The present study focuses on the effect of 1% Zr addition on the microstructure, tensile properties and superplasticity of a forged SP700 alloy. The results demonstrated that Zr has a significant effect on inhibiting the microstructural segregation and increasing the volume fraction of β-phase in the forged SP700 alloy. After annealing at 820 °C for 1 h and aging at 500 °C for 6 h, the SP700 alloy with 1% Zr showed a completely globular and fine microstructure. The yield strength, ultimate tensile strength and tensile elongation of the alloy with optimized microstructure were 1185 MPa, 1296 MPa and 10%, respectively. The superplastic deformation was performed at 750 °C with an elongation of 1248%. The improvement of tensile properties and superplasticity of the forged SP700 alloy by Zr addition was mainly attributed to the uniform and fine globular microstructures.


Author(s):  
Douglas A. Scarth ◽  
Gordon K. Shek ◽  
Steven X. Xu

Delayed Hydride Cracking (DHC) in cold-worked Zr-2.5 Nb pressure tubes is of interest to the CANDU industry in the context of the potential to initiate DHC at an in-service flaw. Examples of in-service flaws are fuel bundle scratches, crevice corrosion marks, fuel bundle bearing pad fretting flaws and debris fretting flaws. To date, experience with fretting flaws has been favourable, and crack growth from an in-service fretting flaw has not been detected. However, postulated DHC growth from these flaws can result in severe restrictions on the allowable number of reactor Heatup/Cooldown cycles prior to re-inspection of the flaw, and it is important to reduce any unnecessary conservatism in the evaluation of DHC from the flaw. One method to reduce conservatism is to take credit for the increase in the isothermal threshold stress intensity factor for DHC initiation at a crack, KIH, as the flaw orientation changes from an axial flaw to a circumferential flaw in the pressure tube. This increase in KIH is due to the texture of the pressure tube material. An engineering relation that provides the value of KIH as a function of the orientation of the flaw relative to the axial direction in the pressure tube has been developed as described in this paper. The engineering relation for KIH has been validated against results from DHC initiation experiments on unirradiated cold-worked Zr-2.5 Nb pressure tube material.


2016 ◽  
Vol 838-839 ◽  
pp. 568-573 ◽  
Author(s):  
Xiu Quan Han ◽  
Ming Jie Fu

The superplasticity of high Nb Ti3Al based alloy - Ti-23Al-17Nb (at.%) alloy sheet under the conditions of 940~1000°C and 5.5×10-5s-1~1.7×10-3s-1are studied. The results show the elongation changes as a parabola with the deformation temperature increasing, and the maximum elongation obtained at 960°C and 5.5x10-5s-1 is 1447.5%. Work hardening stage increases much more than softening stage when strain rate is decreased due to the increasing of element Nb. Compared with primary microstructure, the lath-like α2 grains gradually disappeared, the α2 grains became more equiaxed, and the content and size of α2 grains are decreasing with increasing of deformation temperature. The volume fraction ratio of α2 and β phase at the optimum deformation condition is 50:50%. The cavities mechanism at the fracture tip was discussed; it can be defined that the cavities could be avoided when deformation temperature is higher than 940°C.


2002 ◽  
Vol 33 (4) ◽  
pp. 1103-1115 ◽  
Author(s):  
N. Christodoulou ◽  
C. K. Chow ◽  
P. A. Turner ◽  
C. N. Tomé ◽  
R. J. Klassen

Sign in / Sign up

Export Citation Format

Share Document