scholarly journals Generating the Microstructure of Al-Si Cast Alloys Using Machine Learning

2021 ◽  
Vol 59 (11) ◽  
pp. 838-847
Author(s):  
In-Kyu Hwang ◽  
Hyun-Ji Lee ◽  
Sang-Jun Jeong ◽  
In-Sung Cho ◽  
Hee-Soo Kim

In this study, we constructed a deep convolutional generative adversarial network (DCGAN) to generate the microstructural images that imitate the real microstructures of binary Al-Si cast alloys. We prepared four combinations of alloys, Al-6wt%Si, Al-9wt%Si, Al-12wt%Si and Al-15wt%Si for machine learning. DCGAN is composed of a generator and a discriminator. The discriminator has a typical convolutional neural network (CNN), and the generator has an inverse shaped CNN. The fake images generated using DCGAN were similar to real microstructural images. However, they showed some strange morphology, including dendrites without directionality, and deformed Si crystals. Verification with Inception V3 revealed that the fake images generated using DCGAN were well classified into the target categories. Even the visually imperfect images in the initial training iterations showed high similarity to the target. It seems that the imperfect images had enough microstructural characteristics to satisfy the classification, even though human cannot recognize the images. Cross validation was carried out using real, fake and other test images. When the training dataset had the fake images only, the real and test images showed high similarities to the target categories. When the training dataset contained both the real and fake images, the similarity at the target categories were high enough to meet the right answers. We concluded that the DCGAN developed for microstructural images in this study is highly useful for data augmentation for rare microstructures.

2020 ◽  
Vol 11 ◽  
Author(s):  
Luning Bi ◽  
Guiping Hu

Traditionally, plant disease recognition has mainly been done visually by human. It is often biased, time-consuming, and laborious. Machine learning methods based on plant leave images have been proposed to improve the disease recognition process. Convolutional neural networks (CNNs) have been adopted and proven to be very effective. Despite the good classification accuracy achieved by CNNs, the issue of limited training data remains. In most cases, the training dataset is often small due to significant effort in data collection and annotation. In this case, CNN methods tend to have the overfitting problem. In this paper, Wasserstein generative adversarial network with gradient penalty (WGAN-GP) is combined with label smoothing regularization (LSR) to improve the prediction accuracy and address the overfitting problem under limited training data. Experiments show that the proposed WGAN-GP enhanced classification method can improve the overall classification accuracy of plant diseases by 24.4% as compared to 20.2% using classic data augmentation and 22% using synthetic samples without LSR.


2021 ◽  
Author(s):  
Ruhallah Ahmadian ◽  
Mehdi Ghatee ◽  
Johan Wahlstrom

Driver identification is an important research area in intelligent transportation systems, with applications in commercial freight transport and usage-based insurance. One way to perform the identification is to use smartphones as sensor devices. By extracting features from smartphone-embedded sensors, various machine learning methods can identify the driver. The identification becomes particularly challenging when the number of drivers increases. In this situation, there is often not enough data for successful driver identification. This paper uses a Generative Adversarial Network (GAN) for data augmentation to solve the problem of lacking data. Since GAN diversifies the drivers' data, it extends the applicability of the driver identification. Although GANs are commonly used in image processing for image augmentation, their use for driving signal augmentation is novel. Our experiments prove their utility in generating driving signals emanating from the Discrete Wavelet Transform (DWT) on smartphones' accelerometer and gyroscope signals. After collecting the augmented data, their histograms along the overlapped windows are fed to machine learning methods covered by a Stacked Generalization Method (SGM). The presented hybrid GAN-SGM approach identifies drivers with 97% accuracy, 98% precision, 97% recall, and 97% F1-measure that outperforms standard machine learning methods that process features extracted by the statistical, spectral, and temporal approaches.


2021 ◽  
Vol 11 (4) ◽  
pp. 1798
Author(s):  
Jun Yang ◽  
Huijuan Yu ◽  
Tao Shen ◽  
Yaolian Song ◽  
Zhuangfei Chen

As the capability of an electroencephalogram’s (EEG) measurement of the real-time electrodynamics of the human brain is known to all, signal processing techniques, particularly deep learning, could either provide a novel solution for learning but also optimize robust representations from EEG signals. Considering the limited data collection and inadequate concentration of during subjects testing, it becomes essential to obtain sufficient training data and useful features with a potential end-user of a brain–computer interface (BCI) system. In this paper, we combined a conditional variational auto-encoder network (CVAE) with a generative adversarial network (GAN) for learning latent representations from EEG brain signals. By updating the fine-tuned parameter fed into the resulting generative model, we could synthetize the EEG signal under a specific category. We employed an encoder network to obtain the distributed samples of the EEG signal, and applied an adversarial learning mechanism to continuous optimization of the parameters of the generator, discriminator and classifier. The CVAE was adopted to adjust the synthetics more approximately to the real sample class. Finally, we demonstrated our approach take advantages of both statistic and feature matching to make the training process converge faster and more stable and address the problem of small-scale datasets in deep learning applications for motor imagery tasks through data augmentation. The augmented training datasets produced by our proposed CVAE-GAN method significantly enhance the performance of MI-EEG recognition.


2021 ◽  
Author(s):  
Tzu-Tang Lin ◽  
Yi-Yun Sun ◽  
Wei-Chih Cheng ◽  
I-Hsuan Lu ◽  
Shu-Hwa Chen ◽  
...  

Motivation: New antiviral drugs are urgently needed because of emerging viral pathogens' increasing severity and drug resistance. Antiviral peptides (AVPs) have multiple antiviral properties and are appealing candidates for antiviral drug development. We developed a sequence-based binary classifier to identify whether an unknown short peptide has AVP activity. We collected AVP sequence data from six existing databases. We used a generative adversarial network to augment the number of AVPs in the positive training dataset and allow our deep convolutional neural network model to train on more data. Results: Our classifier achieved outstanding performance on the testing dataset compared with other state-of-the-art classifiers. We deployed our trained classifier on a user-friendly web server. Availability and implementation: AI4AVP is freely accessible at http://axp.iis.sinica.edu.tw/AI4AVP/


2021 ◽  
Author(s):  
Ruhallah Ahmadian ◽  
Mehdi Ghatee ◽  
Johan Wahlstrom

Driver identification is an important research area in intelligent transportation systems, with applications in commercial freight transport and usage-based insurance. One way to perform the identification is to use smartphones as sensor devices. By extracting features from smartphone-embedded sensors, various machine learning methods can identify the driver. The identification becomes particularly challenging when the number of drivers increases. In this situation, there is often not enough data for successful driver identification. This paper uses a Generative Adversarial Network (GAN) for data augmentation to solve the problem of lacking data. Since GAN diversifies the drivers' data, it extends the applicability of the driver identification. Although GANs are commonly used in image processing for image augmentation, their use for driving signal augmentation is novel. Our experiments prove their utility in generating driving signals emanating from the Discrete Wavelet Transform (DWT) on smartphones' accelerometer and gyroscope signals. After collecting the augmented data, their histograms along the overlapped windows are fed to machine learning methods covered by a Stacked Generalization Method (SGM). The presented hybrid GAN-SGM approach identifies drivers with 97% accuracy, 98% precision, 97% recall, and 97% F1-measure that outperforms standard machine learning methods that process features extracted by the statistical, spectral, and temporal approaches.


2021 ◽  
Vol 13 (22) ◽  
pp. 12682
Author(s):  
Hyunkyu Shin ◽  
Yonghan Ahn ◽  
Sungho Tae ◽  
Heungbae Gil ◽  
Mihwa Song ◽  
...  

Recently, in the building and infrastructure fields, studies on defect detection methods using deep learning have been widely implemented. For robust automatic recognition of defects in buildings, a sufficiently large training dataset is required for the target defects. However, it is challenging to collect sufficient data from degrading building structures. To address the data shortage and imbalance problem, in this study, a data augmentation method was developed using a generative adversarial network (GAN). To confirm the effect of data augmentation in the defect dataset of old structures, two scenarios were compared and experiments were conducted. As a result, in the models that applied the GAN-based data augmentation experimentally, the average performance increased by approximately 0.16 compared to the model trained using a small dataset. Based on the results of the experiments, the GAN-based data augmentation strategy is expected to be a reliable alternative to complement defect datasets with an unbalanced number of objects.


Author(s):  
Derek Reiman ◽  
Yang Dai

AbstractThe microbiome of the human body has been shown to have profound effects on physiological regulation and disease pathogenesis. However, association analysis based on statistical modeling of microbiome data has continued to be a challenge due to inherent noise, complexity of the data, and high cost of collecting large number of samples. To address this challenge, we employed a deep learning framework to construct a data-driven simulation of microbiome data using a conditional generative adversarial network. Conditional generative adversarial networks train two models against each other while leveraging side information learn from a given dataset to compute larger simulated datasets that are representative of the original dataset. In our study, we used a cohorts of patients with inflammatory bowel disease to show that not only can the generative adversarial network generate samples representative of the original data based on multiple diversity metrics, but also that training machine learning models on the synthetic samples can improve disease prediction through data augmentation. In addition, we also show that the synthetic samples generated by this cohort can boost disease prediction of a different external cohort.


2017 ◽  
Author(s):  
Benjamin Sanchez-Lengeling ◽  
Carlos Outeiral ◽  
Gabriel L. Guimaraes ◽  
Alan Aspuru-Guzik

Molecular discovery seeks to generate chemical species tailored to very specific needs. In this paper, we present ORGANIC, a framework based on Objective-Reinforced Generative Adversarial Networks (ORGAN), capable of producing a distribution over molecular space that matches with a certain set of desirable metrics. This methodology combines two successful techniques from the machine learning community: a Generative Adversarial Network (GAN), to create non-repetitive sensible molecular species, and Reinforcement Learning (RL), to bias this generative distribution towards certain attributes. We explore several applications, from optimization of random physicochemical properties to candidates for drug discovery and organic photovoltaic material design.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1269
Author(s):  
Jiabin Luo ◽  
Wentai Lei ◽  
Feifei Hou ◽  
Chenghao Wang ◽  
Qiang Ren ◽  
...  

Ground-penetrating radar (GPR), as a non-invasive instrument, has been widely used in civil engineering. In GPR B-scan images, there may exist random noise due to the influence of the environment and equipment hardware, which complicates the interpretability of the useful information. Many methods have been proposed to eliminate or suppress the random noise. However, the existing methods have an unsatisfactory denoising effect when the image is severely contaminated by random noise. This paper proposes a multi-scale convolutional autoencoder (MCAE) to denoise GPR data. At the same time, to solve the problem of training dataset insufficiency, we designed the data augmentation strategy, Wasserstein generative adversarial network (WGAN), to increase the training dataset of MCAE. Experimental results conducted on both simulated, generated, and field datasets demonstrated that the proposed scheme has promising performance for image denoising. In terms of three indexes: the peak signal-to-noise ratio (PSNR), the time cost, and the structural similarity index (SSIM), the proposed scheme can achieve better performance of random noise suppression compared with the state-of-the-art competing methods (e.g., CAE, BM3D, WNNM).


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4365
Author(s):  
Kwangyong Jung ◽  
Jae-In Lee ◽  
Nammoon Kim ◽  
Sunjin Oh ◽  
Dong-Wook Seo

Radar target classification is an important task in the missile defense system. State-of-the-art studies using micro-doppler frequency have been conducted to classify the space object targets. However, existing studies rely highly on feature extraction methods. Therefore, the generalization performance of the classifier is limited and there is room for improvement. Recently, to improve the classification performance, the popular approaches are to build a convolutional neural network (CNN) architecture with the help of transfer learning and use the generative adversarial network (GAN) to increase the training datasets. However, these methods still have drawbacks. First, they use only one feature to train the network. Therefore, the existing methods cannot guarantee that the classifier learns more robust target characteristics. Second, it is difficult to obtain large amounts of data that accurately mimic real-world target features by performing data augmentation via GAN instead of simulation. To mitigate the above problem, we propose a transfer learning-based parallel network with the spectrogram and the cadence velocity diagram (CVD) as the inputs. In addition, we obtain an EM simulation-based dataset. The radar-received signal is simulated according to a variety of dynamics using the concept of shooting and bouncing rays with relative aspect angles rather than the scattering center reconstruction method. Our proposed model is evaluated on our generated dataset. The proposed method achieved about 0.01 to 0.39% higher accuracy than the pre-trained networks with a single input feature.


Sign in / Sign up

Export Citation Format

Share Document