scholarly journals Ferromagnetic 1H-LaBr2 monolayer: a promising 2D piezoelectric

Author(s):  
Mohammad Noor A-Alam ◽  
Michael Nolan

Abstract The discovery of two dimensional (2D) materials that have excellent piezoelectric response along with intrinsic magnetism is promising for nanoscale multifunctional piezoelectric or spintronic devices. Piezoelectricity requires non-centrosymmetric structures with an electric band-gap, whereas magnetism demands broken time-reversal symmetry. Most of the well-known 2D piezoelectric materials – e.g., 1H-MoS2 monolayer – are not magnetic. Being intrinsically magnetic, semiconducting 1H-LaBr2and 1H-VS2 monolayers can combine magnetism and piezoelectricity. We compare piezoelectric properties of 1H-MoS2, 1H-VS2 and 1H-LaBr2 using density functional theory. Our results show that ferromagnetic 1H-LaBr2 2D monolayer displays a larger piezoelectric strain co-efficient (d_{11}= -4.527 pm/V, which is close to d_{11}= 4.104 pm/V of 1H-VS2 monolayer) compared to that of well-known 1H-MoS2 monolayer (d_{11}= 3.706 pm/V), while 1H-MoS2 monolayer has a larger piezoelectric stress co-efficient (e_{11}= 370.675 pC/m) than the 1H-LaBr2 monolayer (e_{11}= -94.175 pC/m, which is also lower than e_{11}= 298.100 pC/m of 1H-VS2 monolayer). These in-plane piezoelectric d_{11} coefficients are quite comparable with piezo-response of bulk wurtzite nitrides – e.g., d_{33} of GaN is about 3.1 pm/V. The large d_{11} for 1H-LaBr2 monolayer originates from the low elastic constants, C_{11}= 30.338 N/m and C_{12} = 9.534 N/m. Interestingly, the sign of the piezoelectric co-coefficients for 1H-LaBr2 monolayer is different to that of the 1H-MoS2 or 1H-VS2 monolayers. The negative sign arises from the negative ionic contribution of e_{11}, which dominates in the 1H-LaBr2 monolayer, whereas the electronic part of e_{11} dominates in 1H-MoS2 and 1H-VS2. Furthermore, we explain the origin of this large ionic contribution of e_{11} for 1H-LaBr2 in terms of the Born effective charges (Z_{11}) and the sensitivity of the atomic positions to the strain (\frac{du}{d\eta}). Surprisingly, we observe a sign reversal in the Z_{11} of Mo and S compared to the nominal oxidation states, which makes both the electronic and ionic parts of e_{11} positive, and results in the high value of e_{11}. Additionally, our interatomic bond analysis using crystal orbital Hamilton populations indicates that the weaker covalent bond in 1H-LaBr2 monolayer is responsible for large \frac{du}{d\eta} and elastic softening (lower elastic constants).

2020 ◽  
Author(s):  
Mohammad Noor-A-Alam ◽  
Oskar Olszewski ◽  
Humberto Campanella ◽  
Michael Nolan

<div>Based on density functional theory, we show that Li and</div><div>X (X=V, Nb and Ta) co-doping in 1Li:1X ratio broadens the</div><div>compositional freedom for significant piezoelectric enhancement in w-AlN, promising them to be good alternatives of expensive Sc. Interestingly, these co-doped w-AlN also show quite large spontaneous electric polarization about 0.80 C/m2 with the possibility of ferroelectric polarization switching, opening new possibilities in wurtzite nitrides. Increase in piezoelectric stress constant (e33) with decrease in elastic constant ( C33 ) results enhancement in piezoelectric strain constant ( d33 ), which is desired for improving the performance of resonators for high frequency RF signals. Also, these co-doped w-AlN are potential lead-free piezoelectric materials for energy harvesting and sensors as they improve the longitudinal electromechanical coupling constant (K^2 33), transverse piezoelectric strain constant (d31), and figure of merit for power generation. However, the enhancement in K^2 33 is not as pronounced as that in d33, because co-doping increases the dielectric constant. The longitudinal acoustic wave velocity (7.09 km/s) of Li0.1875Ta0.1875Al0.625N is quite comparable with that of commercially used piezoelectric LiNbO3 or LiTaO3 in special cuts (about 5~7 km/s) despite the fact that the acoustic wave velocities drop with co-doping or Sc concentration.</div>


2020 ◽  
Author(s):  
Mohammad Noor-A-Alam ◽  
Oskar Olszewski ◽  
Humberto Campanella ◽  
Michael Nolan

<div>Based on density functional theory, we show that Li and</div><div>X (X=V, Nb and Ta) co-doping in 1Li:1X ratio broadens the</div><div>compositional freedom for significant piezoelectric enhancement in w-AlN, promising them to be good alternatives of expensive Sc. Interestingly, these co-doped w-AlN also show quite large spontaneous electric polarization about 0.80 C/m2 with the possibility of ferroelectric polarization switching, opening new possibilities in wurtzite nitrides. Increase in piezoelectric stress constant (e33) with decrease in elastic constant ( C33 ) results enhancement in piezoelectric strain constant ( d33 ), which is desired for improving the performance of resonators for high frequency RF signals. Also, these co-doped w-AlN are potential lead-free piezoelectric materials for energy harvesting and sensors as they improve the longitudinal electromechanical coupling constant (K^2 33), transverse piezoelectric strain constant (d31), and figure of merit for power generation. However, the enhancement in K^2 33 is not as pronounced as that in d33, because co-doping increases the dielectric constant. The longitudinal acoustic wave velocity (7.09 km/s) of Li0.1875Ta0.1875Al0.625N is quite comparable with that of commercially used piezoelectric LiNbO3 or LiTaO3 in special cuts (about 5~7 km/s) despite the fact that the acoustic wave velocities drop with co-doping or Sc concentration.</div>


2019 ◽  
Vol 5 (4) ◽  
pp. eaav3780 ◽  
Author(s):  
Lu You ◽  
Yang Zhang ◽  
Shuang Zhou ◽  
Apoorva Chaturvedi ◽  
Samuel A. Morris ◽  
...  

Recent research on piezoelectric materials is predominantly devoted to enhancing the piezoelectric coefficient, but overlooks its sign, largely because almost all of them exhibit positive longitudinal piezoelectricity. The only experimentally known exception is ferroelectric polymer poly(vinylidene fluoride) and its copolymers, which condense via weak van der Waals (vdW) interaction and show negative piezoelectricity. Here we report quantitative determination of giant intrinsic negative longitudinal piezoelectricity and electrostriction in another class of vdW solids—two-dimensional (2D) layered ferroelectric CuInP2S6. With the help of single crystal x-ray crystallography and density-functional theory calculations, we unravel the atomistic origin of negative piezoelectricity in this system, which arises from the large displacive instability of Cu ions coupled with its reduced lattice dimensionality. Furthermore, the sizable piezoelectric response and negligible substrate clamping effect of the 2D vdW piezoelectric materials warrant their great potential in nanoscale, flexible electromechanical devices.


Author(s):  
T. T. C. Ting

Anisotropic Elasticity offers for the first time a comprehensive survey of the analysis of anisotropic materials that can have up to twenty-one elastic constants. Focusing on the mathematically elegant and technically powerful Stroh formalism as a means to understanding the subject, the author tackles a broad range of key topics, including antiplane deformations, Green's functions, stress singularities in composite materials, elliptic inclusions, cracks, thermo-elasticity, and piezoelectric materials, among many others. Well written, theoretically rigorous, and practically oriented, the book will be welcomed by students and researchers alike.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1032
Author(s):  
Anirban Naskar ◽  
Rabi Khanal ◽  
Samrat Choudhury

The electronic structure of a series perovskites ABX3 (A = Cs; B = Ca, Sr, and Ba; X = F, Cl, Br, and I) in the presence and absence of antisite defect XB were systematically investigated based on density-functional-theory calculations. Both cubic and orthorhombic perovskites were considered. It was observed that for certain perovskite compositions and crystal structure, presence of antisite point defect leads to the formation of electronic defect state(s) within the band gap. We showed that both the type of electronic defect states and their individual energy level location within the bandgap can be predicted based on easily available intrinsic properties of the constituent elements, such as the bond-dissociation energy of the B–X and X–X bond, the X–X covalent bond length, and the atomic size of halide (X) as well as structural characteristic such as B–X–B bond angle. Overall, this work provides a science-based generic principle to design the electronic states within the band structure in Cs-based perovskites in presence of point defects such as antisite defect.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1649
Author(s):  
Gemechis D. Degaga ◽  
Sumandeep Kaur ◽  
Ravindra Pandey ◽  
John A. Jaszczak

Vertically stacked, layered van der Waals (vdW) heterostructures offer the possibility to design materials, within a range of chemistries and structures, to possess tailored properties. Inspired by the naturally occurring mineral merelaniite, this paper studies a vdW heterostructure composed of a MoS2 monolayer and a PbS bilayer, using density functional theory. A commensurate 2D heterostructure film and the corresponding 3D periodic bulk structure are compared. The results find such a heterostructure to be stable and possess p-type semiconducting characteristics. Due to the heterostructure’s weak interlayer bonding, its carrier mobility is essentially governed by the constituent layers; the hole mobility is governed by the PbS bilayer, whereas the electron mobility is governed by the MoS2 monolayer. Furthermore, we estimate the hole mobility to be relatively high (~106 cm2V−1s−1), which can be useful for ultra-fast devices at the nanoscale.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 100
Author(s):  
Hongcheng Liu ◽  
Feipeng Wang ◽  
Kelin Hu ◽  
Tao Li ◽  
Yuyang Yan ◽  
...  

In this paper, the Ir-modified MoS2 monolayer is suggested as a novel gas sensor alternative for detecting the characteristic decomposition products of SF6, including H2S, SO2, and SOF2. The corresponding adsorption properties and sensing behaviors were systematically studied using the density functional theory (DFT) method. The theoretical calculation indicates that Ir modification can enhance the surface activity and improve the conductivity of the intrinsic MoS2. The physical structure formation, the density of states (DOS), deformation charge density (DCD), molecular orbital theory analysis, and work function (WF) were used to reveal the gas adsorption and sensing mechanism. These analyses demonstrated that the Ir-modified MoS2 monolayer used as sensing material displays high sensitivity to the target gases, especially for H2S gas. The gas sensitivity order and the recovery time of the sensing material to decomposition products were reasonably predicted. This contribution indicates the theoretical possibility of developing Ir-modified MoS2 as a gas sensor to detect characteristic decomposition gases of SF6.


2019 ◽  
Vol 33 (08) ◽  
pp. 1950093 ◽  
Author(s):  
A. Afaq ◽  
Abu Bakar ◽  
M. Rizwan ◽  
M. Aftab Fareed ◽  
H. Bushra Munir ◽  
...  

In this study, thermo-elastic and lattice dynamic properties of XMgAl (X = Li, Na) half-Heusler compounds are investigated using density functional theory implemented in WIEN2k and Quantum ESPRESSO codes. Generalized gradient approximation (GGA) as an exchange correlation function has been used in Kohn–Sham equations. Firstly, the structure of these Heusler compounds is optimized and then these optimized parameters are used to find three elastic constants [Formula: see text], [Formula: see text] and [Formula: see text] for [Formula: see text] type structures. Three elastic constants are then used to determine different elastic moduli like bulk modulus, shear modulus, Young’s modulus and other mechanical parameters like Pugh’s ratio, Poisson’s ratio, anisotropic ratio, sound velocities, Debye temperature and melting temperature. On behalf of these mechanical parameters, the brittle/ductile nature and isotropic/anisotropic behavior of the materials has been studied. Different regions of vibrational modes in the materials are also discussed on behalf of Debye temperature calculations. The vibrational properties of the half-Heusler compounds are computed using Martins–Troullier pseudo potentials implemented in Quantum ESPRESSO. The phonon dispersion curves and phonon density of states in first Brillion zone are obtained and discussed. Reststrahlen band of LiMgAl is found greater than NaMgAl.


2016 ◽  
Vol 30 (30) ◽  
pp. 1650373 ◽  
Author(s):  
Li Xue ◽  
Yi-Ming Ren ◽  
Zheng-Long Hu

[Formula: see text] is a promising thermoelectric (TE) material for high temperature TE applications. This work systematically investigated the structural, elastic and thermodynamic properties of [Formula: see text] ([Formula: see text] = 0, 0.25, 0.5, 0.75 and 1) by density functional theory. The calculated lattice volume is expanded with the increase of Ag content, but this expansion is anisotropic. The lattice parameter along [Formula: see text]-axis is linear expansion, and along [Formula: see text]-axis is parabolic expansion, which is in good agreement with available experimental data. The phase stability of [Formula: see text] alloy is studied by analyzing the formation energy, cohesive energy and elastic constants. Shear modulus, Young’s modulus, sound velocities, Debye temperature and the minimum thermal conductivity are obtained from the calculated elastic constants. The results show that Ag substitution could reduce the lattice thermal conductivity, which is helpful for improving the TE properties of [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document