scholarly journals Milk performance of dairy cows supplemented with a combination of slow-release nitrogen and exogenous fibrolytic enzyme

2021 ◽  
Vol 74 (3) ◽  
pp. 280-282
Author(s):  
Vimlesh C Sharma ◽  
Sudhir K Singh ◽  
MS Mahesh ◽  
Srilatha Atmakuri ◽  
B Chandran ◽  
...  
Dairy ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 684-694
Author(s):  
Lenka Krpálková ◽  
Niall O’Mahony ◽  
Anderson Carvalho ◽  
Sean Campbell ◽  
Gerard Corkery ◽  
...  

Identification of the associations of cow feed efficiency with feeding behaviour and milk production is important for supporting recommendations of strategies that optimise milk yield. The objective of this study was to identify associations between measures of feed efficiency, feed intake, feeding rate, rumination time, feeding time, and milk production using data collected from 26 dairy cows during a 3 month period in 2018. Cows averaged (mean ± standard deviation) 2.2 ± 1.7 lactations, 128 ± 40 days in milk, 27.5 ± 5.5 kg/day milk, 1.95 ± 0.69 kg feed/1 kg milk—the measure used to express feed conversion ratio (FCR), 575 ± 72 min/day rumination time, and 264 ± 67 min/day feeding time during the observation period. The coefficient of variation for rumination time (min/d) was 12.5%. A mixed linear model was selected for analyses. The most feed inefficient cows with the highest FCR (≥2.6 kg feed/1 kg milk) showed the lowest milk yield (24.8 kg/day), highest feed intake (78.8 kg), highest feeding rate (0.26 kg/min) and BCS (3.35 point). However, the relative milk yield (milk yield per 100 kg of body weight) was the highest (4.01 kg/day) in the most efficient group with the lowest FCR (≤1.4 kg feed/1 kg milk). Our study showed that the most efficient cows with the lowest FCR (≤1.4 kg feed/1 kg milk) had the highest rumination time (597 min/day; p < 0.05), feeding time (298 min/day; p < 0.05), rumination/activity ratio (4.39; p < 0.05) and rumination/feeding ratio (2.04; p < 0.05). Less active cows (activity time 164 min/day; p < 0.05) were the most efficient cows with the lowest FCR (≤1.4 kg feed/1 kg milk). The behavioural differences observed in this study provide new insight into the association of feed behaviour and feed efficiency with milk performance. Incorporating feeding behaviour into the dry matter intake model can improve its accuracy in the future and benefit breeding programmes.


2000 ◽  
Vol 43 (1) ◽  
pp. 17-26
Author(s):  
L. Panicke ◽  
J. Weingärtner ◽  
M. Schmidt ◽  
T. Król

Abstract. Title of the paper: Relationship between lysosomal blood activity and milk content» of urea and protein in different phases of milk production in dairy cows Relationship of lysosomal enzyme activities in blood and supply of energy and protein in dairy cattle were investigated. Closed correlation coefficients were calculated for lysosomal enzyme activity and content of protein and urea in milk. Especially a high or a low content of protein in the food ration affects the lysosomal enzyme activities considerably. A different lysosomal response to equal food supply was gained after deviding the cow stock into different groups regarding performance at a different lactation status. Growth, breed, age, capacity of food intake and milk performance might be influencing factors.


2020 ◽  
pp. 1-9
Author(s):  
C. Wang ◽  
L. Han ◽  
G. W. Zhang ◽  
H. S. Du ◽  
Z. Z. Wu ◽  
...  

Abstract Coated copper sulphate (CCS) could be used as a Cu supplement in cows. To investigate the influences of copper sulphate (CS) and CCS on milk performance, nutrient digestion and rumen fermentation, fifty Holstein dairy cows were arranged in a randomised block design to five groups: control, CS addition (7·5 mg Cu/kg DM from CS) or CCS addition (5, 7·5 and 10 mg Cu/kg DM from CCS, respectively). When comparing Cu source at equal inclusion rates (7·5 mg/kg DM), cows receiving CCS addition had higher yields of fat-corrected milk, milk fat and protein; digestibility of DM, organic matter (OM) and neutral-detergent fibre (NDF); ruminal total volatile fatty acid (VFA) concentration; activities of carboxymethyl cellulase, cellobiase, pectinase and α-amylase; populations of Ruminococcus albus, Ruminococcus flavefaciens and Fibrobacter succinogenes; and liver Cu content than cows receiving CS addition. Increasing CCS addition, DM intake was unchanged, yields of milk, milk fat and protein; feed efficiency; digestibility of DM, OM, NDF and acid-detergent fibre; ruminal total VFA concentration; acetate:propionate ratio; activity of cellulolytic enzyme; populations of total bacteria, protozoa and dominant cellulolytic bacteria; and concentrations of Cu in serum and liver increased linearly, but ruminal propionate percentage, ammonia-N concentration, α-amylase activity and populations of Prevotella ruminicola and Ruminobacter amylophilus decreased linearly. The results indicated that supplement of CS could be substituted with CCS and addition of CCS improved milk performance and nutrient digestion in dairy cows.


2010 ◽  
Vol 55 (No. 11) ◽  
pp. 468-478 ◽  
Author(s):  
K. Poláková ◽  
V. Kudrna ◽  
A. Kodeš ◽  
B. Hučko ◽  
Z. Mudřík

The main aim of this study was to investigate experimentally the effect of different composition of non-structural carbohydrates (NFC) in prepartum feed rations administered to high-yielding dairy cows at a high concentration of NFC in the diet on dry matter intake both before and after parturition and on subsequent milk performance, body condition and physiological traits of rumen fluid and blood. Thirty-six high-yielding dairy cows were allocated into one of the three well-balanced groups (K, O, and C), and each group received a different feeding rations. Feeding rations differed in non-structural carbohydrate (NFC) structure. The "K" (control) group received a feeding ration with NFC in the form of maize starch in particular, while the feeding rations of the other two (experimental) groups contained either (besides maize starch) saccharose from dried sugar beet (the "O" group) or a dominant amount of NFC was in the form of saccharose (the "C" group). After calving, all dairy cows were given the same feeding ration from the first day after parturition. The experiment was conducted for 21 days before and 50 days after calving. FR in the form of total mixed ration was offered ad libitum. Dry matter intake, milk performance, body condition, live weight, and blood and rumen parameters were recorded for the duration of the experiment. Average daily dry matter intake before calving was highest in the "K" group (14.32 kg per head). Differences among groups were statistically significant (P &lt; 0.05). Prepartum dry matter consumption dropped as the rate of saccharose in the diet of cows increased. Dry matter consumption levelled off after calving. Milk yield was also highest in the "K" group (43.71 kg/head/day), but fatness of milk and thus the production of fat corrected milk were lowest in this group. The highest milk fat content (4.10%) and fat corrected milk production (44.03 kg/head/day) were recorded in the "C" group, whereas the highest milk protein concentration was found in the milk of the "O" group. The composition of NFC affected dry matter intake before parturition, but these concentrations did not significantly affect dry matter intake, milk yield, milk composition, live weight, body condition or blood serum and rumen fluid parameters after calving


2014 ◽  
Vol 192 ◽  
pp. 15-23 ◽  
Author(s):  
Lu Jin ◽  
Sumei Yan ◽  
Binlin Shi ◽  
Hongyun Bao ◽  
Jian Gong ◽  
...  

PLoS ONE ◽  
2018 ◽  
Vol 13 (3) ◽  
pp. e0193685 ◽  
Author(s):  
Janis Hausmann ◽  
Carolin Deiner ◽  
Amlan K. Patra ◽  
Irmgard Immig ◽  
Alexander Starke ◽  
...  

2013 ◽  
Vol 67 (3) ◽  
pp. 202-218 ◽  
Author(s):  
Malte Lohölter ◽  
Ulrich Meyer ◽  
Caroline Rauls ◽  
Jürgen Rehage ◽  
Sven Dänicke

2021 ◽  
Vol 51 (1) ◽  
Author(s):  
S. Hallajian ◽  
J. Fakhraei ◽  
H.M. Yarahamdi ◽  
K.J. Khorshidi

The study investigated the effects of replacing soybean meal (SBM) with slow-release urea (SRU) on milk production, milk composition, and rumen fermentation of Holstein dairy cows. Sixteen Holstein cows weighing between 550 and 680 kg in mid lactation were randomly assigned to four dietary treatments in a 12-week study. The treatments consisted of T1: a diet containing 16.7% crude protein (CP), T2: T1 with 0.5% SRU replacing plant protein, T3: T1 with 0.75% SRU replacing plant protein, and T4: T1 with 1.00% SRU replacing plant protein. Animals were fed three times a day with feed being offered ad libitum. Dry matter intake (DMI) and average daily gain (ADG) were not affected by the level of SRU. Feeding SRU did not affect milk production and milk composition significantly, but milk fat and milk urea nitrogen (MUN) levels were increased. Significant differences were observed in ruminal volatile fatty acid (VFA) concentration. Feeding SRU increased butyrate concentration with no significant effects on concentrations of acetate or propionate. Significant differences were observed in cholesterol, triglyceride, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and nonesterified fatty acid (NEFA) concentrations, but glucose, very-low-density lipoprotein (VLDL) and β-hydroxybutyrate (BHB) levels were not affected significantly by the treatments. Thus, feeding SRU altered the release rate of ammonia and provided more ammonia nitrogen (NH3-N) for microbial protein synthesis in the rumen.


Sign in / Sign up

Export Citation Format

Share Document