scholarly journals Inoculum concentration and pathogenicity of Colletotrichum gloeosporioides in jatropha leaves (Jatropha curcas).

2018 ◽  
Vol 1 (4) ◽  
pp. 52-56
Author(s):  
Milton Luiz da Paz-Lima ◽  
Anderson Rodrigues Rietjens ◽  
Franciele Cristina Silva ◽  
Aline Suelen Silva

Abstract – In Brazil has been stimulated the use of Jatropha curcas as an alternative for use in biodiesel. Anthracnose-of-jatropha is a frequent disease main in regions and seasons with hot and moisture weather. The objective of this study was to evaluate the effect of inoculum concentrations and pathogenicity of C. gloeosporioides in jatropha leaves. Fruits and leaves collected during the rainy season (Urutaí, GO) presenting leaf spot symptoms were taken to the laboratory for isolation and identification of the pathogen. In light microscope he observed that this was an isolated Colletotrichum sp. From this isolate two assays were performed: a) inoculating test mycelial disks on potted plants (treatments with and without injury); b) conidial suspensions were inoculated at concentrations of 103, 104, 105 and 106 conídios.mL-1 using the method of "detached leaves" (wounding treatments with and without injury). In the first assay the plants showed a latent period of 11 days with an average severity of 1 %. In the second trial in treated wounds showed the highest values of area under the disease progress curve (AUDPC) for concentrations of 105 conídios.mL-1 (2938.2 + 178.5) and 106 conídios.mL-1 ( 3685.2 + 347.5), statistically different from the others. And in no injury treatments, dilution 104, 105 and 106 conídios.mL-1 statistically equal AACPD values differing only in minor inoculated concentration. Through this work we can see the pathogenicity of C. gloeosporioides in jatropha and point the concentration of 106 conídios.mL-1 as ideal for testing and resistance studies jatropha anthracnose.

2021 ◽  
Vol 3 (5) ◽  
pp. 23-32
Author(s):  
A. Muntala ◽  
S. Kwadwo Gyasi ◽  
P. Mawuenyegan Norshie ◽  
S. Larbi-Koranteng ◽  
F. Kwekucher Ackah ◽  
...  

Cashew (Anacardium occidentale L.), a recently recognized cash crop in Ghana, is an economically export oriented crop that plays a helping role in the Ghanaian economy in diverse ways. Owing to its importance, surveys were conducted in some major cashew producing communities in Dormaa and Berekum West District of the Bono region to assess the problems of insect pests and diseases associated with this economic tree across the study area. Diseased samples showing varying degrees of symptoms were taken for isolation and identification using morphological method. Insect pests were also assessed and identified. The results showed Colletotrichum gloeosporioides species complex to be associated with anthracnose, leaf lesions or spots, gummosis of twigs and stems and regressive die-back; Lasiodiplodia theobromae was found to cause stem and twig gummosis, blight, die-back of twigs and inflorescence; Pestalotia sp. was associated with Pestalotia leaf spot. Others, such as Penicillium sp., powdery mildew, Curvularia lunata, Cephaleuros sp. (red rust- algal leaf spot), mushroom and lichens were also found to be associated with the cashew orchards in the study area. Anthracnose, gummosis, algal leaf, and stem spots (red rust) and cashew kernel infection by Curvularia lunata constituted the major diseases of cashew in ascending order in the study area. The insect pests identified included Oecophylla smaragdina, Anoplocne miscurvipeson, Pseudotheraptus devastans, Pachnoda cordata, Pachnoda marginata, Helopeltis bug, Helopeltis schoutedeni, Planococcus sp., Lamida moncusalis, Odontotermes sp., Aphis sp., Analeptes trifasciata. Some unidentified pathogens, pests and other abnormalities were also observed.


Plant Disease ◽  
2012 ◽  
Vol 96 (9) ◽  
pp. 1380-1380 ◽  
Author(s):  
Z. R. Shi ◽  
M. M. Xiang ◽  
Y. X. Zhang ◽  
J. H. Huang

Tibouchina semidecandra Cogn. is a popular ornamental plant in tropical and subtropical areas (1). In August 2011, a leaf spot was observed on approximately 70% of 5,000 potted plants of T. semidecandra in a nursery in Zhongshan, Guangdong Province, China. Each leaf spot was round with a brown center surrounded by a reddish brown border, and ranged from 8 to 10 mm in diameter. A fungus was isolated consistently from the lesions by surface-sterilizing symptomatic leaf sections (each 3 cm2) with 75% alcohol for 8 s, washing the sections with sterile water, soaking the sections in 3% NaOCl for 15 s, rinsing the sections with sterile water three times, and then placing the sections on potato dextrose agar (PDA) at 28°C. Each of three single-spore isolates on PDA produced gray, floccose colonies that reached 70 mm in diameter after 5 days at 28°C. Setae were dark brown, straight, erect, distantly and inconspicuously septate, and 125 to 193 × 3.0 to 4.5 μm. Conidiophores were light brown, cylindrical, simple or sometimes branched at the base, and 105 to 202 × 3 to 5 μm. Separating cells were hyaline, oval, and 12 to 13 × 4 to 5 μm. Conidia were unequally biconic, unicellular, dark brown with a pale brown or subhyaline band just above the widest part, and 26 to 31 × 8.5 to 12 μm (mean 27.3 × 10.6 μm) with a conspicuous appendage at the apex that was 6 to 14 × 1 to 1.8 μm. These characteristics were consistent with the description of Beltrania rhombica Penz. (3). The internal transcribed spacer (ITS) region of the ribosomal DNA (rDNA) of one isolate (GenBank Accession No. JN853777) was amplified using primers ITS4 and ITS5 (4) and sequenced. A BLAST search in GenBank revealed 97% similarity to the ITS sequence of an isolate of B. rhombica (GU797390.1). To confirm pathogenicity of the isolate, ten detached leaves from 3-month-old plants of T. semidecandra ‘Purple Glorybush’ were inoculated in vitro with 5-mm diameter, colonized mycelial plugs from the periphery of 5-day-old cultures of the isolated fungus. The agar plugs were put on the leaf surface and secured with sterile, moist cotton. Sterile PDA plugs were similarly used as the control treatment on ten detached leaves. Leaves were placed in petri dishes and incubated in a growth chamber with 12 h of light/day at 28°C. Necrotic lesions appeared on leaves after 2 to 3 days of incubation, whereas control leaves inoculated with sterile PDA plugs remained asymptomatic. B. rhombica was consistently reisolated from the lesions using the same method described above, but was not reisolated from the control leaves. Although there are approximately 77 reported hosts of B. rhombica (2), to our knowledge, this is the first report of B. rhombica causing a leaf spot on T. semidecandra. Because the disease caused foliar damage and reduced the ornamental value of the nursery plants, control measures may need to be implemented for this species in nurseries. References: (1) M. Faravani and B. H. Bakar. J. Food Agric. Env. Pap. 5:234, 2007. (4) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , 30 Mar. 2012. (2) K. A. Pirozyski and S. D. Patil. Can. J. Bot. Pap. 48:567, 1970. (3) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, CA, 1990.


Plant Disease ◽  
2017 ◽  
Vol 101 (7) ◽  
pp. 1222-1229 ◽  
Author(s):  
E. A. Newberry ◽  
L. Ritchie ◽  
B. Babu ◽  
T. Sanchez ◽  
K. A. Beckham ◽  
...  

Bacterial leaf spot of watermelon caused by Pseudomonas syringae has been an emerging disease in the southeastern United States in recent years. Disease outbreaks in Florida were widespread from 2013 to 2014 and resulted in foliar blighting at the early stages of the crop and transplant losses. We conducted a series of field trials at two locations over the course of two years to examine the chemical control options that may be effective in management of this disease, and to investigate the environmental conditions conducive for bacterial leaf spot development. Weekly applications of acibenzolar-S-methyl (ASM) foliar, ASM drip, or copper hydroxide mixed with ethylene bis-dithiocarbamate were effective in reducing the standardized area under the disease progress curve (P < 0.05). Pearson’s correlation test demonstrated a negative relationship between the average weekly temperature and disease severity (–0.77, P = 0.0002). When incorporated into a multiple regression model with the square root transformed average weekly rainfall, these two variables accounted for 71% of the variability observed in the weekly disease severity (P < 0.0001). This information should be considered when choosing the planting date for watermelon seedlings as the cool conditions often encountered early in the spring season are conducive for bacterial leaf spot development.


Plant Disease ◽  
2010 ◽  
Vol 94 (3) ◽  
pp. 339-344 ◽  
Author(s):  
A. Suthaparan ◽  
Arne Stensvand ◽  
S. Torre ◽  
Maria L. Herrero ◽  
R. I. Pettersen ◽  
...  

The effect of day length on production and germinability of conidia and severity of disease caused by Podosphaera pannosa, the causal agent of rose powdery mildew, was studied. Whole potted plants or detached leaves of Rosa interspecific hybrid ‘Mistral’ were inoculated with P. pannosa and exposed to 0, 12, 18, 20, 22, or 24 h of artificial light per day in growth chambers equipped with mercury lamps. Increasing duration of illumination from 18 to 20 to 24 h per day reduced production of conidia by 22 to 62%. Exposure to 24 h of illumination per day also strongly reduced disease severity compared with 18 h. Our results suggest that increasing day lengths from 18 h per day to 20 to 24 h may suppress the disease significantly and, thereby, reduce the need for fungicide applications against powdery mildew.


Plant Disease ◽  
2011 ◽  
Vol 95 (3) ◽  
pp. 263-268 ◽  
Author(s):  
S. K. Gremillion ◽  
A. K. Culbreath ◽  
D. W. Gorbet ◽  
B. G. Mullinix ◽  
R. N. Pittman ◽  
...  

Field experiments were conducted in 2002 to 2006 to characterize yield potential and disease resistance in the Bolivian landrace peanut (Arachis hypogaea) cv. Bayo Grande, and breeding lines developed from crosses of Bayo Grande and U.S. cv. Florida MDR-98. Diseases of interest included early leaf spot, caused by the fungus Cercospora arachidicola, and late leaf spot, caused by the fungus Cercosporidium personatum. Bayo Grande, MDR-98, and three breeding lines, along with U.S. cvs. C-99R and Georgia Green, were included in split-plot field experiments in six locations across the United States and Bolivia. Whole-plot treatments consisted of two tebuconazole applications and a nontreated control. Genotypes were the subplot treatments. Area under the disease progress curve (AUDPC) for percent defoliation due to leaf spot was lower for Bayo Grande and all breeding lines than for Georgia Green at all U.S. locations across years. AUDPC for disease incidence from one U.S. location indicated similar results. Severity of leaf spot epidemics and relative effects of the genotypes were less consistent in the Bolivian experiments. In Bolivia, there were no indications of greater levels of disease resistance in any of the breeding lines than in Bayo Grande. In the United States, yields of Bayo Grande and the breeding lines were greater than those of the other genotypes in 1 of 2 years. In Bolivia, low disease intensity resulted in the highest yields in Georgia Green, while high disease intensity resulted in comparable yields among the breeding lines, MDR-98, and C-99R. Leaf spot suppression by tebuconazole was greater in Bolivia than in the United States. This result indicates a possible higher level of fungicide resistance in the U.S. population of leaf spot pathogens. Overall, data from this study suggest that Bayo Grande and the breeding lines may be desirable germplasm for U.S. and Bolivian breeding programs or production.


Author(s):  
Priyanka Choudhary ◽  
Ramesh Chand ◽  
Anil Kumar Singh

Background: Cercospora leaf spot (CLS) is a fungal disease of mungbean [Vigna radiata (L.) Wilczek] caused by Cercospora canescens and now emerged as an important biotic stress. A better understanding of the genetics of CLS resistance will help in formulating efficient breeding procedures in mungbean.Methods: The present investigation focused on genetics of CLS resistance through generation mean analysis (six parameter model) in two intra-specific mungbean crosses namely, Kopergaon × HUM12 and Kopergaon × ML1720. Four quantitative disease resistance components, viz., Area under disease progress curve (AUDPC), Incubation period (IP), Latent period (LP) and degree of sporulation (SP) were studied.Result: A high correlation of AUDPC with latent period (r = –0.68 to –0.79, P less than 0.0001) and SP (r = 0.72 to -0.81, P less than 0.0001) advocated that both are main contributor for CLS disease development. High heterosis along with high heritability in terms of AUDPC ( greater than 0.09) indicated the importance of genetic factor(s) in controlling CLS resistance. Generation mean analysis of both the crosses revealed duplicate epistatic interaction and involvement of two genes for CLS resistance in terms of AUDPC. This study supports oligogenic nature of inheritance, advocating AUDPC along with IP, LP and SP as important disease indicator for selection of CLS resistance in mungbean.


Plant Disease ◽  
2003 ◽  
Vol 87 (1) ◽  
pp. 101-101 ◽  
Author(s):  
K. A. Jones ◽  
M. B. Rayamajhi ◽  
P. D. Pratt ◽  
T. K. Van

Lygodium microphyllum (Cav.) R.Br. (Old World climbing fern) and L. japonicum (Thunb.) Sw. (Japanese climbing fern), in the family Schizaeaceae, are among the most invasive weeds in Florida (1). L. microphyllum invades fresh water and moist habitats in south Florida, while L. japonicum has spread in relatively well-drained habitats from Texas to North Carolina and central Florida. Some potted plants of both Lygodium spp. grown in shadehouse as well as in full sunlight developed discolored spots on pinnules (foliage), which coalesced and resulted in browning and dieback of severely infected vines. Symptomatic foliage obtained from these plants was surface-sterilized by immersing in a 15% solution of commercial bleach for 90 s, followed by a series of four rinses with sterile deionized distilled water. Disks (4 mm in diameter) of pinnules were cut from the junction of discolored and healthy tissues and placed on potato dextrose agar (PDA). A fungus, Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. was consistently isolated from these disks. Fungal colonies produced abundant conidia on PDA. Conidia were hyaline, straight, cylindrical, averaging 14.7 μm (range 12.5 to 17.5 μm) × 5.0 μm (range 3.8 to 7.5 μm), and similar to those described for C. gloeosporioides (2). To confirm the pathogenicity of C. gloeosporioides on L. microphyllum and L. japonicum, Koch's postulates were performed. A fungal isolate was grown on PDA for 3 weeks, after which 10 ml of sterile deionized distilled water was added to the culture and agitated to dislodge conidia. The conidial suspension was strained through three layers of cheesecloth to remove hyphal fragments, and its concentration was adjusted to 1.7 × 106 conidia/ml. Foliage of healthy L. microphyllum and L. japonicum plants grown in 500-ml containers was sprayed with the conidial suspension until runoff. Plants were covered with plastic bags whose inner sides were misted with water to maintain high humidity and placed in a growth chamber under 12 h of fluorescent light per day. Temperature and relative humidity in the chamber ranged from 26 to 29°C and 44 to 73%, respectively. Plastic bags were removed after 3 days, and plants were further incubated for 3 weeks in the same growth chamber. Control plants were sprayed with sterile water, covered with plastic bags, and exposed to the same temperature, light, and humidity regime as those of the fungus-inoculated plants. Small, discolored foliar spots appeared 3 days after fungus inoculation. These spots were similar to those observed on pinnules of potted plants that originated from shadehouse and outdoor environments. Within 3 weeks after inoculation, the foliage of L. japonicum developed abundant discolored spots that led to edge browning and wilting of the pinnules. L. microphyllum had similar but more severe symptoms, with plants suffering as much as 50% dieback. C. gloeosporioides was consistently reisolated from the symptomatic tissues of both fern species. No symptoms appeared on the water-inoculated plants. To our knowledge, this is the first record of C. gloeosporioides pathogenicity on L. microphyllum and L. japonicum. References: (1) R. W. Pemberton and A. P. Ferriter. Am. Fern J. 88:165, 1998. (2) B. C. Sutton. Colletotrichum: Biology, Pathology and Control. CAB International, Wallingford, Oxon, UK, 1992.


Plant Disease ◽  
2014 ◽  
Vol 98 (6) ◽  
pp. 854-854 ◽  
Author(s):  
B.-J. Li ◽  
H.-Y. Ben ◽  
Y.-X. Shi ◽  
X.-W. Xie ◽  
A.-L. Chai

Zantedeschia aethiopica (L.) Spreng. (calla lily), belonging to family Araceae, is a popular ornamental plant in China. In the summer of 2010, leaves of calla lily with typical symptoms of necrotic lesions were observed in a commercial glasshouse in Beijing, China (116°20′ E, 39°44′ N). The initial symptoms were circular to subcircular, 1 to 3 mm, and dark brown lesions on the leaf lamina. Under high humidity, lesions expanded rapidly to 5 to 10 mm with distinct concentric zones and produced black sporodochia, especially on the backs of leaves. Later, the infected leaves were developing a combination of leaf lesions, yellowing, and falling off; as a result, the aesthetic value of the plant was significantly impacted. Leaf samples were used in pathogen isolation. Symptomatic leaf tissues were cut into small pieces and surface sterilized with 70% ethanol for 30 s and then in 0.1% mercuric chloride solution for 1 to 3 min. After being washed in sterile distilled water three times, the pieces were plated on potato dextrose agar (PDA) and incubated at 25°C in darkness for 7 days (5). Initial colonies of isolates were white, floccose mycelium and developed dark green to black concentric rings that were sporodochia bearing viscid spore masses after incubating 5 days. Conidiophores branched repeatedly. Conidiogenous cells were hyaline, clavate, and 10.0 to 16.0 × 1.4 to 2.0 μm. Conidia were hyaline, cylindrical, both rounded ends, and 6.0 to 8.2 × 1.9 to 2.4 μm. Morphological characteristics of the fungus were consistent with the description of Myrothecium roridum Tode ex Fr. (3,4). To confirm the pathogenicity, three healthy plants of calla lily were inoculated with a conidial suspension (1 × 106 conidia per ml) brushed from a 7-day-old culture of the fungus. Control plants were sprayed with sterile water. The inoculated plants were individual with clear plastic bags and placed in a glass cabinet at 25°C. After 7 days, all inoculated leaves developed symptoms similar to the original samples, but control plants remained disease free. Re-isolation and identification confirmed Koch's postulates. For molecular identification, genomic DNA of a representative isolate (MTL07081001) was extracted by modified CTAB method (1), and the rDNA-ITS region was amplified by using primers ITS1 (5-TCCGTAGGTGAACCTGCGG-3) and ITS4 (5-TCCTCCGCTTATTGATATGC-3). The 465-bp amplicon (GenBank Accession No. KF761293) was 100% identity to the sequence of M. roridum (JF724158.1) from GenBank. M. roridum has an extensive host range, covering 294 host plants (2). To our knowledge, this is the first record of leaf spot caused by M. roridum on calla lily in China. References: (1) F. M. Ausubel et al. Current Protocols in Molecular Biology. John Wiley & Sons Inc, New York, 1994. (2) D. F. Farr and A. Y. Rossman, Fungal Databases. Syst. Mycol. Microbiol. Lab., ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , October 2013. (3) M. T. Mmbaga et al. Plant Dis. 94:1266, 2010. (4) Y. X. Zhang et al. Plant Dis. 95:1030, 2011. (5) L. Zhu et al. J. Phytopathol. 161:59, 2013.


1975 ◽  
Vol 23 (2) ◽  
pp. 126-130
Author(s):  
W.J. Kender ◽  
H. Jonkers

The development of leaf spot, a non-pathogenic disorder specific to the cv. Golden Delicious, was accelerated in detached leaves (whether previously unmarked or showing leaf spot) when these were cultured in solutions of GA3 or GA4+7 at 10, 50 or 100 mg/l for 72 h. About 15% of the foliage on the trees exhibited leaf spot at the time selected leaves were detached for culture. In a second experiment with cultured leaves the interaction of PBA and GA4+7 applied simultaneously was highly synergistic in increasing the severity of the disorder when compared with the effect of either growth substance alone. (Abstract retrieved from CAB Abstracts by CABI’s permission)


Plant Disease ◽  
2010 ◽  
Vol 94 (12) ◽  
pp. 1508-1508 ◽  
Author(s):  
X. Y. Chen ◽  
C. Sui ◽  
B. C. Gan ◽  
J. H. Wei ◽  
Y. K. Zhou

Patchouli (Pogostemon cablin (Blanco) Benth.) is mainly cultivated in Southeast Asia as a medicinal shrub and a source of patchouli oil used in perfumery. In 2008, a leaf spot disease was observed on patchouli plants grown on most farms (some farms had 99% incidence) in Wanning, the predominant cultivation location in the Hainan Province of China. The disease usually began at the tip of leaves, the main veins, or small veinlets. Severely irregular-shaped dark brown leaf spots expanded over 5 to 10 days, eventually causing infected leaves to abscise. The time from initial leaf lesions to abscission usually took 1 month. The disease was usually most severe in April and May, causing significant economic losses along with quality losses to patchouli oil extracted from leaves. To isolate the causal pathogen, diseased leaves were collected in August 2008 from a farm of the Hainan Branch Institute of Medicinal Plant Development in Wanning, surface sterilized in 75% ethanol for 1 min, transferred to potato dextrose agar (PDA), and incubated at 28°C for 14 days. Single-spore cultures of three isolates were obtained and identified as Corynespora cassiicola (Berk. & Curt.) Wei. on the basis of morphological and physiological features (1). Genomic DNA was extracted from all the cultures. The internal transcribed spacer (ITS) region of the rDNA was amplified using primers ITS1 (5′-TCCGATGGTGAACCTGCGG-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′). Amplicons were 546 bp (GenBank Accession No. HM145960) and had 99% nucleotide identity with the corresponding sequence (GenBank Accession No. GU138988) of C. cassiicola isolated from cassava (Manihot esculenta Crantz). To satisfy Koch's postulates, 50-day-old potted plants in a tent were sprayed until runoff with a spore suspension (1 × 106 spores/ml) prepared from 10-day-old cultures. Using this spray method, one isolate was inoculated separately onto nine leaves of three potted plants. The potted plants were covered with plastic bags to maintain high humidity for 48 h and then placed outside under natural environmental conditions (temperature 20 to 28°C). Another nine leaves of three potted plants, sprayed only with sterile water, served as noninoculated control plants. Leaf spot symptoms similar to those on diseased field plants appeared after 7 days on all inoculated plants. C. cassiicola was reisolated from all inoculated test plants. No symptoms were observed on the control plants. To our knowledge, this is the first report of C. cassiicola causing a leaf spot disease on patchouli in China. Other previous reports of this disease were from Cuba (2). This pathogen has also been reported previously to be economically important on a number of other hosts. On patchouli plants, more attention should be given to prevention and control measures to help manage this disease. References: (1) M. B. Ellis. Dematiaceous Hyphomycetes. Commonwealth Mycological Institute: Kew, Surrey, England, 1971. (2) I. Sandoval et al. Cienc. Tec. Agric., Prot. Plant. 10:21, 1987.


Sign in / Sign up

Export Citation Format

Share Document