scholarly journals Green Milk From Contented Cows: Is It Possible?

2021 ◽  
Vol 2 ◽  
Author(s):  
John Webster

The dairy industry is open to criticism on several fronts: obesity and ill health among the affluent, high demand for crops that could be consumed more sustainably and more equitably by ourselves, environmental damage and climate change, and abuse of animal welfare through production diseases and denial of normal patterns of behaviour. All these criticisms are valid. It is necessary therefore to examine in depth the nature and extent of specific problems to see which, if any, are inevitable, which can be mitigated and which can be avoided altogether. Dairy cattle, like all ruminants, can be sustained wholly, or in part on complementary feeds; grasses and crop residues that cannot be fed directly to humans. Fed appropriate diets dairy cows can produce more energy and protein for human consumption than they consume. The greenhouse gas, methane is an inevitable consequence of rumen fermentation. High yielding cows in confinement produce less methane per litre of milk. There is some scope for reducing methane production through manipulation of rumen fermentation but the impact is likely to be small. The most serious welfare abuses can be linked to genetic and management strategies designed to maximise milk yield from individual cows. These manifest in production diseases and metabolic exhaustion, both leading to premature culling. All these problems; too much milk, too much food waste, too much methane, too many stressed cows, are matters of degree. The poison is in the dose. Thus, solutions will not come from radical advances in biological science but public and political exercises in moderation.

Animals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 235 ◽  
Author(s):  
Pratap Pragna ◽  
Surinder S. Chauhan ◽  
Veerasamy Sejian ◽  
Brian J. Leury ◽  
Frank R. Dunshea

The ability of an animal to cope and adapt itself to the changing climate virtually depends on the function of rumen and rumen inhabitants such as bacteria, protozoa, fungi, virus and archaea. Elevated ambient temperature during the summer months can have a significant influence on the basic physiology of the rumen, thereby affecting the nutritional status of the animals. Rumen volatile fatty acid (VFA) production decreases under conditions of extreme heat. Growing recent evidence suggests there are genetic variations among breeds of goats in the impact of heat stress on rumen fermentation pattern and VFA production. Most of the effects of heat stress on rumen fermentation and enteric methane (CH4) emission are attributed to differences in the rumen microbial population. Heat stress-induced rumen function impairment is mainly associated with an increase in Streptococcus genus bacteria and with a decrease in the bacteria of Fibrobactor genus. Apart from its major role in global warming and greenhouse effect, enteric CH4 is also considered as a dietary energy loss in goats. These effects warrant mitigating against CH4 production to ensure optimum economic return from goat farming as well as to reduce the impact on global warming as CH4 is one of the more potent greenhouse gases (GHG). The various strategies that can be implemented to mitigate enteric CH4 emission include nutritional interventions, different management strategies and applying advanced biotechnological tools to find solution to reduce CH4 production. Through these advanced technologies, it is possible to identify genetically superior animals with less CH4 production per unit feed intake. These efforts can help the farming community to sustain goat production in the changing climate scenario.


2021 ◽  
Author(s):  
Giovanna Battipaglia ◽  
Francesco Niccoli ◽  
Arturo Pacheco-Solana

<p>Climate-induced forest mortality is a critical issue in the Mediterranean basin, with major consequences for the functioning of these key ecosystems. Indeed, in Mediterranean ecosystems, where water stress is already the most limiting factor for tree performance, climatic changes are expected to entail an increase in water deficit. In this context, annual growth rings can provide short- (e.g., years) and long-term (e.g., decades) information on how trees respond to drought events. With climate change, <em>Pinus pinaster</em> and <em>Pinus pinea</em> L. are expected to reduce their distribution range in the region, being displaced at low altitudes by more drought tolerant taxa such as sub Mediterranean <em>Quercus</em> spp.</p><p>This study aims was to assess the physiological response of <em>Pinus</em> and <em>Quercus</em> species growing in the Vesuvio National park, located in Southern Italy and where an increase of temperature and drought events has been recorded in the recent years. Our preliminary results underlined the importance of temperature on the tree ring width of all the analyses species. The high temperatures can cause a change in the constant kinetics of the RuBisCo, leading to a consequent decrease in carboxylation rate and thus to a reduction in tree growth. On the other hand, also precipitation seemed to affect the growth of the sampled trees: indeed, in all the chronologies a reduction in growth was found after particular dry years: for example, the low rainfall in 1999 (455 mm/year) determined a drastic decline in growth in 2000 in all the species. In addition to the climatic factors, competition can also play an important role in the growth rate: dendrochronological analyzes have highlighted how stand specific properties (i.e. density, structure and composition) can influence individual tree responses to drought events. The knowledge of those researches should be integrated into sustainable forest management strategies to minimize the potential impacts of climate change on forest ecosystems.</p>


Author(s):  
Tamika A. Garrick ◽  
Oscar E. Liburd

The world population is expected to exceed 9 billion by 2050 and most of this growth will occur in developing countries. As population increases, more arable lands will be used to construct cities and these activities increase CO2 in the atmosphere and contribute to climate change. Climate assessments have shown rising sea levels and increase in the frequency of droughts in many dry areas. Prolonged droughts can decrease the relative amounts of water available for human consumption and agriculture. In developing countries agriculture contributes to more than 15% of GDP and when crops and livestock are deprived of water they become more susceptible to pests and diseases. As climate change continues to occur there is a need to develop strategies to manage key invasive pest and disease species that threaten agricultural production. Thrips are major agricultural pests with the majority of species in tropical regions. They are cosmopolitan in nature and damage crops when they feed and lay eggs in many parts of the plant. Thrips are also vectors for spreading plant diseases. They disperse quickly into new areas where susceptible hosts exist. This chapter focuses on a few important thrips species that threatens agricultural production in the Americas including Central and South America and the Caribbean. The chapter discusses the ecology and pest management strategies for key invasive thrips species and examines the potential effects of climate change on these troublesome species.


Hydrology ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 61 ◽  
Author(s):  
Kleoniki Demertzi ◽  
Dimitris Papadimos ◽  
Vassilis Aschonitis ◽  
Dimitris Papamichail

This study proposes a simplistic model for assessing the hydroclimatic vulnerability of lakes/reservoirs (LRs) that preserve their steady-state conditions based on regulated superficial discharge (Qd) out of the LR drainage basin. The model is a modification of the Bracht-Flyr et al. method that was initially proposed for natural lakes in closed basins with no superficial discharge outside the basin (Qd = 0) and under water-limited environmental conditions {mean annual ratio of potential/reference evapotranspiration (ETo) versus rainfall (P) greater than 1}. In the proposed modified approach, an additional Qd function is included. The modified model is applied using as a case study the Oreastiada Lake, which is located inside the Kastoria basin in Greece. Six years of observed data of P, ETo, Qd, and lake topography were used to calibrate the modified model based on the current conditions. The calibrated model was also used to assess the future lake conditions based on the future climatic projections (mean conditions of 2061-2080) derived by 19 general circulation models (GCMs) for three cases of climate change (three cases of Representative Concentration Pathways: RCP2.6, RCP4.5 and RCP8.5). The modified method can be used as a diagnostic tool in water-limited environments for analyzing the superficial discharge changes of LRs under different climatic conditions and to support the design of new management strategies for mitigating the impact of climate change on (a) flooding conditions, (b) hydroelectric production, (c) irrigation/industrial/domestic use and (d) minimum ecological flows to downstream rivers.


Author(s):  
Ashok K. Mishra ◽  
Valerian O. Pede

Purpose The purpose of this study is to first examine the factors affecting the intra-household perception of climate change. Second, the study investigates the impact of the perception of climatic stress on the operators’ and spouses’ intra-household adaptation strategies (farm and household financial strategies). Design/methodology/approach The study uses household survey data from Vietnam’s Mekong Delta. The study uses probit and negative binomial count data approaches to evaluate the empirical model. Findings Results confirm the existence of intra-household gender differences in the adaptation strategies. The authors found that although spouses perceive climatic stress, they are less likely to adapt to such stresses when it comes farming enterprise, but more likely to adapt to household financial strategies. In contrast, farm operators, in the presence of climatic stresses, undertake both farm and household finance adaptation strategies. Practical implications Investment in climate smart agriculture can help households in managing climatic stresses. Originality/value A farmer in Asia, and Vietnam in particular, faces significant risks from climatic changes. In Vietnam, agriculture is easily affected by natural disasters and climatic changes. This study provides insights into the perception of climatic changes by operators and spouses in Vietnam’s Mekong Delta. Perceived changes in the climate have a greater impact on women because they typically lack the necessary tools to adapt to climate change. The current findings could be useful in managing climatic risk in Vietnam’s Mekong Delta and be helpful to policymakers in designing risk management strategies in response to climatic changes.


2015 ◽  
Vol 01 (03) ◽  
pp. 1550009 ◽  
Author(s):  
Mac Kirby ◽  
Jeff Connor ◽  
Mobin-ud Din Ahmad ◽  
Lei Gao ◽  
Mohammed Mainuddin

In an earlier paper (Kirby et al. 2014a), we showed that climate change and a new policy which reallocates water to the environment will impact both the flow of water and the income derived from irrigation in the Murray–Darling Basin. Here, we extend the analysis to consider irrigator and environmental water management strategies to adapt to these new circumstances. Using an integrated hydrology-economics model, we examine a range of strategies and their impact on flows and the gross income of irrigation. We show that the adaptation strategies provide a range of flow and economic outcomes in the Basin. Several strategies offer significant scope to enhance flows without large adverse impacts on the gross income of irrigation overall. Some environmental water management strategies enhance flows in the Murray part of the basin even under the drying influence of a projected median climate change. Irrigator strategies that include carryover of water in storage from one year to the next provide for lesser year to year variability in gross income and may be regarded as more advantageous in providing security against droughts. Flows and the gross income of low value irrigation industries strategies are sensitive to climate change, irrespective of adaptation strategy. Should a projected dry extreme climate change be realized, no strategy can prevent a large reduction in flows and also in gross income, particularly of low value irrigation industries. Nevertheless, environmental water management strategies mitigate the impact on flows, and in some cases may also help mitigate the impacts on gross income. High value irrigation industries are less affected (in terms of gross income, though net income will reduce because of rising water prices) by projected climate change, consistent with observation in the recent long term drought.


2021 ◽  
Vol 921 (1) ◽  
pp. 012049
Author(s):  
P Agustine ◽  
H Parung ◽  
P Davey ◽  
C Frid

Abstract Following an oil spill in the western Java Sea, in July 2019, the issue of oil pollution has received heightened interest. More and more people in Indonesia are increasingly aware that environmental damage will be a severe threat to the sustainability of ecosystems and environmental services. Given that oil pollution does endanger not only the aquatic ecosystem but also the surrounding terrestrial ecosystem, it is essential to encourage the involvement of stakeholders to contribute to efforts to prevent and minimize the impact of oil pollution in coastal areas that may arise in the future. Thus, since oil pollution is extremely harmful not only to aquatic ecosystems but also terrestrial ecosystems, coastal management strategies are urgently required to minimize the impact of oil pollution in the future. The overall aim of this research is to provide recommendations for policy formulations that may be adopted by the relevant local government to protect coastal areas from seawater contaminated with oil. This research uses both qualitative and quantitative approaches, including Statistical analysis, Strength-Weakness-Opportunity-Threat (SWOT) analysis and Analytical Hierarchy Process (AHP). The type of data collected will be primary data and secondary data which are sourced from experts and agencies engaged in the management of the coastal and marine environments.


2019 ◽  
Vol 76 (6) ◽  
pp. 1524-1542
Author(s):  
Melissa A Haltuch ◽  
Z Teresa A’mar ◽  
Nicholas A Bond ◽  
Juan L Valero

Abstract US West Coast sablefish are economically valuable, with landings of 11.8 million pounds valued at over $31 million during 2016, making assessing and understanding the impact of climate change on the California Current (CC) stock a priority for (1) forecasting future stock productivity, and (2) testing the robustness of management strategies to climate impacts. Sablefish recruitment is related to large-scale climate forcing indexed by regionally correlated sea level (SL) and zooplankton communities that pelagic young-of-the-year sablefish feed upon. This study forecasts trends in future sablefish productivity using SL from Global Climate Models (GCMs) and explores the robustness of harvest control rules (HCRs) to climate driven changes in recruitment using management strategy evaluation (MSE). Future sablefish recruitment is likely to be similar to historical recruitment but may be less variable. Most GCMs suggest that decadal SL trends result in recruitments persisting at lower levels through about 2040 followed by higher levels that are more favorable for sablefish recruitment through 2060. Although this MSE suggests that spawning biomass and catches will decline, and then stabilize, into the future under both HCRs, the sablefish stock does not fall below the stock size that leads to fishery closures.


2020 ◽  
Author(s):  
Alexandre Zerbo ◽  
Rafael Castro Delgado ◽  
Pedro Arcos González

Abstract Burkina Faso is a West African Sahelian country with climate-related risks because the disaster risk profile, and drought and floods are the main damaging natural disasters, aggravated by the phenomenon of climate change. An effective design and implementation of disaster reduction management strategies requires an understanding of risk factors and vulnerabilities, but also and an assessment of the strengths and weaknesses of national disaster response systems.In this perspective, a literature review and an analysis of climate information were conducted in order to reveal the risks and vulnerabilities to droughts and floods in the country. This was accompanied by a critical evaluation of the performance of the national prevention and intervention system.Vulnerabilities to drought and floods are exacerbated by the combined effect of climate change and the low performance of the national disaster risk reduction management system. National institutions and frameworks exist for disaster prevention and management, but difficulties persist in implementation due to financial constraints and insufficient human skills. Current trends and estimates suggest that the drawbacks of these natural hazards may be more serious in the future if solutions are not taken to improve early warning forecasts, infrastructure and the implementation of adequate agricultural policies.


Forests ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 622 ◽  
Author(s):  
Xian-Ge Hu ◽  
Jian-Feng Mao ◽  
Yousry A. El-Kassaby ◽  
Kai-Hua Jia ◽  
Si-Qian Jiao ◽  
...  

Knowledge about the local adaptation and response of forest tree populations to the climate is important for assessing the impact of climate change and developing adaptive genetic resource management strategies. However, such information is not available for most plant species. Here, based on 69 provenances tested at 19 common garden experimental sites, we developed a universal response function (URF) for tree height at seven years of age for the important and wide-spread native Chinese tree species Platycladus orientalis (L.) Franco. URF was recently used to predict the potential growth response of a population originating from any climate and growing in any climate conditions. The developed model integrated both genetic and environmental effects, and explained 55% of the total variation in tree height observed among provenances and test sites in China. We found that local provenances performed better than non-local counterparts in habitats located in central, eastern, and southwestern China, showing the evidence of local adaptation as compared to other regions. In contrast, non-local provenances outperformed local ones in peripheral areas in northern and northwestern China, suggesting an adaptational lag in these areas. Future projections suggest that the suitable habitat areas of P. orientalis would expand by 15%–39% and shift northward by 0.8–3 degrees in latitude; however, the projected tree height of this species would decline by 4%–8% if local provenances were used. If optimal provenances were used, tree height growth could be improved by 13%–15%, along with 59%–71% suitable habitat expansion. Thus, assisted migration with properly selected seed sources would be effective in avoiding maladaptation in new plantations under a changing climate for P. orientalis.


Sign in / Sign up

Export Citation Format

Share Document