scholarly journals Chitosan-Based Functional Materials for Skin Wound Repair: Mechanisms and Applications

Author(s):  
Peipei Feng ◽  
Yang Luo ◽  
Chunhai Ke ◽  
Haofeng Qiu ◽  
Wei Wang ◽  
...  

Skin wounds not only cause physical pain for patients but also are an economic burden for society. It is necessary to seek out an efficient approach to promote skin repair. Hydrogels are considered effective wound dressings. They possess many unique properties like biocompatibility, biodegradability, high water uptake and retention etc., so that they are promising candidate materials for wound healing. Chitosan is a polymeric biomaterial obtained by the deacetylation of chitin. With the properties of easy acquisition, antibacterial and hemostatic activity, and the ability to promote skin regeneration, hydrogel-like functional wound dressings (represented by chitosan and its derivatives) have received extensive attentions for their effectiveness and mechanisms in promoting skin wound repair. In this review, we extensively discussed the mechanisms with which chitosan-based functional materials promote hemostasis, anti-inflammation, proliferation of granulation in wound repair. We also provided the latest information about the applications of such materials in wound treatment. In addition, we summarized the methods to enhance the advantages and maintain the intrinsic nature of chitosan via incorporating other chemical components, active biomolecules and other substances into the hydrogels.

2020 ◽  
Vol 9 (1) ◽  
pp. 1576-1585
Author(s):  
Yan Kong ◽  
Xiaoxuan Tang ◽  
Yahong Zhao ◽  
Xiaoli Chen ◽  
Ke Yao ◽  
...  

Abstract The performance of wound dressing determines the effect of wound closure and recovery. Water absorption and bacteriostasis of wound dressings play an important role in wound recovery and healing. In this study, an optimized chitosan wound dressing-tough chitosan dressing (TCS) with high water absorption, high bacteriostasis, and degradability was developed. The chemical structure of chitosan remained stable during the process of optimized treatment, and an increase in mechanical properties was obtained for the dressing. After optimization, the water absorption and antibacterial properties of the chitosan dressing were greatly improved, which is significantly better than sodium alginate dressing. The authors believe that TCS dressing with high hygroscopicity and high bacteriostasis has great potential application value in the field of wound recovery and healing.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhenping Wang ◽  
Yanhan Wang ◽  
Nicholas Bradbury ◽  
Carolina Gonzales Bravo ◽  
Bernd Schnabl ◽  
...  

AbstractPoor wound closure due to diabetes, aging, stress, obesity, alcoholism, and chronic disease affects millions of people worldwide. Reasons wounds will not close are still unclear, and current therapies are limited. Although stem cell factor (SCF), a cytokine, is known to be important for wound repair, the cellular and molecular mechanisms of SCF in wound closure remain poorly understood. Here, we found that SCF expression in the epidermis is decreased in mouse models of delayed wound closure intended to mimic old age, obesity, and alcoholism. By using SCF conditionally knocked out mice, we demonstrated that keratinocytes’ autocrine production of SCF activates a transient c-kit receptor in keratinocytes. Transient activation of the c-kit receptor induces the expression of growth factors and chemokines to promote wound re-epithelialization by increasing migration of skin cells (keratinocytes and fibroblasts) and immune cells (neutrophils) to the wound bed 24–48 h post-wounding. Our results demonstrate that keratinocyte-produced SCF is essential to wound closure due to the increased recruitment of a unique combination of skin cells and immune cells in the early phase after wounding. This discovery is imperative for developing clinical strategies that might improve the body’s natural repair mechanisms for treating patients with wound-closure pathologies.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3910
Author(s):  
Laura Lozano Chamizo ◽  
Yurena Luengo Morato ◽  
Karina Ovejero Paredes ◽  
Rafael Contreras Caceres ◽  
Marco Filice ◽  
...  

The treatment of skin wounds poses significant clinical challenges, including the risk of bacterial infection. In particular due to its antimicrobial and tissue regeneration abilities chitosan (a polymeric biomaterial obtained by the deacetylation of chitin) has received extensive attention for its effectiveness in promoting skin wound repair. On the other hand, due to their intrinsic characteristics, metal nanoparticles (e.g., silver (Ag), gold (Au) or iron oxide (Fe3O4)) have demonstrated therapeutic properties potentially useful in the field of skin care. Therefore, the combination of these two promising materials (chitosan plus metal oxide NPs) could permit the achievement of a promising nanohybrid with enhanced properties that could be applied in advanced skin treatment. In this work, we have optimized the synthesis protocol of chitosan/metal hybrid nanoparticles by means of a straightforward synthetic method, ionotropic gelation, which presents a wide set of advantages. The synthesized hybrid NPs have undergone to a full physicochemical characterization. After that, the in vitro antibacterial and tissue regenerative activities of the achieved hybrids have been assessed in comparison to their individual constituent. As result, we have demonstrated the synergistic antibacterial plus the tissue regeneration enhancement of these nanohybrids as a consequence of the fusion between chitosan and metallic nanoparticles, especially in the case of chitosan/Fe3O4 hybrid nanoparticles.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Menghan Wang ◽  
Jianzhong Bai ◽  
Kan Shao ◽  
Wenwei Tang ◽  
Xueling Zhao ◽  
...  

Hydrogels have three-dimensional network structures, high water content, good flexibility, biocompatibility, and stimulation response, which have provided a unique role in many fields such as industry, agriculture, and medical treatment. Poly(vinyl alcohol) PVA hydrogel is one of the oldest composite hydrogels. It has been extensively explored due to its chemical stability, nontoxic, good biocompatibility, biological aging resistance, high water-absorbing capacity, and easy processing. PVA-based hydrogels have been widely investigated in drug carriers, articular cartilage, wound dressings, tissue engineering, and other intelligent materials, such as self-healing and shape-memory materials, supercapacitors, sensors, and other fields. In this paper, the discovery, development, preparation, modification methods, and applications of PVA functionalized hydrogels are reviewed, and their potential applications and future research trends are also prospected.


Life ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1016
Author(s):  
Jingjing Su ◽  
Jiankang Li ◽  
Jiaheng Liang ◽  
Kun Zhang ◽  
Jingan Li

Wounds have become one of the causes of death worldwide. The metabolic disorder of the wound microenvironment can lead to a series of serious symptoms, especially chronic wounds that bring great pain to patients, and there is currently no effective and widely used wound dressing. Therefore, it is important to develop new multifunctional wound dressings. Hydrogel is an ideal dressing candidate because of its 3D structure, good permeability, excellent biocompatibility, and ability to provide a moist environment for wound repair, which overcomes the shortcomings of traditional dressings. This article first briefly introduces the skin wound healing process, then the preparation methods of hydrogel dressings and the characteristics of hydrogel wound dressings made of natural biomaterials and synthetic materials are introduced. Finally, the development prospects and challenges of hydrogel wound dressings are discussed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jian Zhang ◽  
Yongjun Zheng ◽  
Jimmy Lee ◽  
Jieyu Hua ◽  
Shilong Li ◽  
...  

AbstractEffective healing of skin wounds is essential for our survival. Although skin has strong regenerative potential, dysfunctional and disfiguring scars can result from aberrant wound repair. Skin scarring involves excessive deposition and misalignment of ECM (extracellular matrix), increased cellularity, and chronic inflammation. Transforming growth factor-β (TGFβ) signaling exerts pleiotropic effects on wound healing by regulating cell proliferation, migration, ECM production, and the immune response. Although blocking TGFβ signaling can reduce tissue fibrosis and scarring, systemic inhibition of TGFβ can lead to significant side effects and inhibit wound re-epithelization. In this study, we develop a wound dressing material based on an integrated photo-crosslinking strategy and a microcapsule platform with pulsatile release of TGF-β inhibitor to achieve spatiotemporal specificity for skin wounds. The material enhances skin wound closure while effectively suppressing scar formation in murine skin wounds and large animal preclinical models. Our study presents a strategy for scarless wound repair.


Author(s):  
Parisa Heydari ◽  
Mahshid Kharaziha ◽  
Jaleh Varshosaz ◽  
Shaghayegh Haghjooy Javanmard

2017 ◽  
Vol 3 (12) ◽  
pp. 3338-3350 ◽  
Author(s):  
Antoine Venault ◽  
Cheng-Sian Liou ◽  
Lu-Chen Yeh ◽  
Jheng-Fong Jhong ◽  
James Huang ◽  
...  
Keyword(s):  

Author(s):  
Mimi Borrelli ◽  
Abra H Shen ◽  
Michelle Griffin ◽  
Shamik Mascharak ◽  
Sandeep Adem ◽  
...  

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Kareem Abdelsaid ◽  
Sudhahar Varadarajan ◽  
Archita Das ◽  
Yutao Liu ◽  
Xuexiu Fang ◽  
...  

Background: Exosomes, key mediators of cell-cell communication, derived from type 2 diabetes mellitus (T2DM) have detrimental effects. Exercise not only improves endothelial dysfunction and angiogenesis in T2DM but also induces secretion of exosomes into circulation. Extracellular superoxide dismutase (ecSOD) is a major secretory Cu containing antioxidant enzyme that catalyzes dismutation of O 2 •- to H 2 O 2 and its full activity requires Cu transporter ATP7A. We reported that ecSOD-derived H 2 O 2 in endothelial cells (ECs) enhances angiogenesis while impaired ATP7A-ecSOD axis in diabetes induces endothelial dysfunction. Here we examined whether exercise-derived exosomes (Exe-Exo) may have pro-angiogenic effects via regulating ATP7A-ecSOD axis in T2DM. Results: Two weeks of voluntary wheel exercise of control C57Bl6 mice increased plasma exosome levels (6.2-fold) characterized by Nanosight, TEM and exosome markers (CD63, CD81, Tsg101). Treatment of HUVECs with equal number of exosomes revealed that angiogenic responses such as EC migration (1.8-fold) and tube formation (1.7-fold) were significantly enhanced by Exe-Exo compared to sedentary-derived exosomes (Sed-Exo). This was associated with increased ATP7A (2.9-fold) and ecSOD (1.4-fold) expression in Exe-Exo. Sed-Exo from high fat-induced T2DM mice significantly decreased EC migration (40%) and tube formation (10%) as well as ATP7A expression (28%) compared to Sed-Exo from control mice, which were restored by T2DM Exe-Exo, but not by T2DM/ecSOD KO Exe-Exo. Furthermore, exosomes overexpressing ecSOD (ecSOD-Exo) which mimic exercise increased angiogenesis and H2O2 levels in ECs, which were inhibited by overexpression of catalase. In vivo, skin wound healing model showed that direct application of T2DM Sed-Exo delayed while T2DM Exe-Exo enhanced wound healing of control mice. Furthermore, defective wound healing in T2DM mice or ecSOD KO mice were rescued by ecSOD-Exo application. Conclusion: Exercise training improves pro-angiogenic function of circulating exosomes in T2DM via increasing ATP7A-ecSOD axis, which may provide an effective therapy for promoting angiogenesis and wound repair in metabolic and cardiovascular diseases.


Sign in / Sign up

Export Citation Format

Share Document