scholarly journals Mobilizing Endogenous Repair Through Understanding Immune Reaction With Biomaterials

Author(s):  
Maria Karkanitsa ◽  
Parinaz Fathi ◽  
Tran Ngo ◽  
Kaitlyn Sadtler

With few exceptions, humans are incapable of fully recovering from severe physical trauma. Due to these limitations, the field of regenerative medicine seeks to find clinically viable ways to repair permanently damaged tissue. There are two main approaches to regenerative medicine: promoting endogenous repair of the wound, or transplanting a material to replace the injured tissue. In recent years, these two methods have fused with the development of biomaterials that act as a scaffold and mobilize the body’s natural healing capabilities. This process involves not only promoting stem cell behavior, but by also inducing activity of the immune system. Through understanding the immune interactions with biomaterials, we can understand how the immune system participates in regeneration and wound healing. In this review, we will focus on biomaterials that promote endogenous tissue repair, with discussion on their interactions with the immune system.

2021 ◽  
Author(s):  
Bhuvaneshwari Sampath ◽  
Priyadarshan Kathirvelu ◽  
Kavitha Sankaranarayanan

The role of immune system in our body is to defense against the foreign bodies. However, if the immune system fails to recognize self and non-self-cells in our body leads to autoimmune diseases. Widespread autoimmune diseases are rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, type 1 diabetes, and more yet to be added to the list. This chapter discusses about how stem cell-based therapies and advancement of regenerative medicine endow with novel treatment for autoimmune diseases. Furthermore, in detail, specific types of stem cells and their therapeutic approach for each autoimmune condition along with their efficiency to obtain desired results are discussed. Ultimately, this chapter describes the recent trends in treating autoimmune diseases effectively using advanced stem cell research.


Author(s):  
Muhammad Shafiq ◽  
Onaza Ali ◽  
Seong-Beom Han ◽  
Dong-Hwee Kim

Stem cells have been extensively used in regenerative medicine and tissue engineering; however, they often lose their functionality because of the inflammatory microenvironment. This leads to their poor survival, retention, and engraftment at transplantation sites. Considering the rapid loss of transplanted cells due to poor cell-cell and cell-extracellular matrix (ECM) interactions during transplantation, it has been reasoned that stem cells mainly mediate reparative responses via paracrine mechanisms, including the secretion of extracellular vesicles (EVs). Ameliorating poor cell-cell and cell-ECM interactions may obviate the limitations associated with the poor retention and engraftment of transplanted cells and enable them to mediate tissue repair through the sustained and localized presentation of secreted bioactive cues. Biomaterial-mediated strategies may be leveraged to confer stem cells enhanced immunomodulatory properties, as well as better engraftment and retention at the target site. In these approaches, biomaterials have been exploited to spatiotemporally present bioactive cues to stem cell-laden platforms (e.g., aggregates, microtissues, and tissue-engineered constructs). An array of biomaterials, such as nanoparticles, hydrogels, and scaffolds, has been exploited to facilitate stem cells function at the target site. Additionally, biomaterials can be harnessed to suppress the inflammatory microenvironment to induce enhanced tissue repair. In this review, we summarize biomaterial-based platforms that impact stem cell function for better tissue repair that may have broader implications for the treatment of various diseases as well as tissue regeneration.


2020 ◽  
Vol 8 ◽  
Author(s):  
Xiaobing Fu

Abstract Wound healing, tissue repair and regenerative medicine are in great demand, and great achievements in these fields have been made. In recent years, many of these successes have benefitted patients, especially in the field of chronic skin wounds. However, perfect tissue repair and regeneration of damaged tissues and organs are still great challenges in the management of trauma and diseases. In this paper, the main achievements in wound healing, tissue repair and regeneration in China are reviewed and the establishment of wound healing centers and new technology application in improving wound healing quality in patients in China is highlighted.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chaoshan Han ◽  
Feng Liu ◽  
Yu Zhang ◽  
Wenjie Chen ◽  
Wei Luo ◽  
...  

Recent studies have shown that the hydrogels formed by composite biomaterials are better choice than hydrogels formed by single biomaterial for tissue repair. We explored the feasibility of the composite hydrogel formed by silk fibroin (SF) and silk sericin (SS) in tissue repair for the excellent mechanical properties of SF, and cell adhesion and biocompatible properties of SS. In our study, the SF SS hydrogel was formed by SF and SS protein with separate extraction method (LiBr dissolution for SF and hot alkaline water dissolution for SS), while SF-SS hydrogel was formed by SF and SS protein using simultaneous extraction method (LiBr dissolution for SF and SS protein). The effects of the two composite hydrogels on the release of inflammatory cytokines from macrophages and the wound were analyzed. Moreover, two hydrogels were used to encapsulate and deliver human umbilical cord mesenchymal stem cell derived exosomes (UMSC-Exo). Both SF SS and SF-SS hydrogels promoted wound healing, angiogenesis, and reduced inflammation and TNF-α secretion by macrophages. These beneficial effects were more significant in the experimental group treated by UMSC-Exo encapsulated in SF-SS hydrogel. Our study found that SF-SS hydrogel could be used as an excellent alternative to deliver exosomes for tissue repair.


2013 ◽  
Vol 9 (8) ◽  
pp. 1370-1377 ◽  
Author(s):  
Gabriel Molina Olyveira ◽  
Gerson Arisoly Xavier Acasigua ◽  
Ligia Maria Manzine Costa ◽  
Cristiane Regina Scher ◽  
Lauro Xavier Filho ◽  
...  

Author(s):  
Ning Zeng ◽  
Hongbo Chen ◽  
Yiping Wu ◽  
Zeming Liu

Wound healing is one of the most complex physiological regulation mechanisms of the human body. Stem cell technology has had a significant impact on regenerative medicine. Adipose stem cells (ASCs) have many advantages, including their ease of harvesting and high yield, rich content of cell components and cytokines, and strong practicability. They have rapidly become a favored tool in regenerative medicine. Here, we summarize the mechanism and clinical therapeutic potential of ASCs in wound repair.


Sign in / Sign up

Export Citation Format

Share Document