scholarly journals The Role of Cell Adhesion and Cytoskeleton Dynamics in the Pathogenesis of the Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders

Author(s):  
Sabeeha Malek ◽  
Darius V. Köster

The Ehlers-Danlos syndromes (EDS) are a group of 13 disorders, clinically defined through features of joint hypermobility, skin hyperextensibility, and tissue fragility. Most subtypes are caused by mutations in genes affecting the structure or processing of the extracellular matrix (ECM) protein collagen. The Hypermobility Spectrum Disorders (HSDs) are clinically indistinguishable disorders, but are considered to lack a genetic basis. The pathogenesis of all these disorders, however, remains poorly understood. Genotype-phenotype correlations are limited, and findings of aberrant collagen fibrils are inconsistent and associate poorly with the subtype and severity of the disorder. The defective ECM, however, also has consequences for cellular processes. EDS/HSD fibroblasts exhibit a dysfunctional phenotype including impairments in cell adhesion and cytoskeleton organization, though the pathological significance of this has remained unclear. Recent advances in our understanding of fibroblast mechanobiology suggest these changes may actually reflect features of a pathomechanism we herein define. This review departs from the traditional view of EDS/HSD, where pathogenesis is mediated by the structurally defective ECM. Instead, we propose EDS/HSD may be a disorder of membrane-bound collagen, and consider how aberrations in cell adhesion and cytoskeleton dynamics could drive the abnormal properties of the connective tissue, and be responsible for the pathogenesis of EDS/HSD.

2021 ◽  
Vol 134 (18) ◽  
Author(s):  
Lisa te Molder ◽  
Jose M. de Pereda ◽  
Arnoud Sonnenberg

ABSTRACT Hemidesmosomes (HDs) are specialized multiprotein complexes that connect the keratin cytoskeleton of epithelial cells to the extracellular matrix (ECM). In the skin, these complexes provide stable adhesion of basal keratinocytes to the underlying basement membrane. Integrin α6β4 is a receptor for laminins and plays a vital role in mediating cell adhesion by initiating the assembly of HDs. In addition, α6β4 has been implicated in signal transduction events that regulate diverse cellular processes, including proliferation and survival. In this Review, we detail the role of α6β4 in HD assembly and beyond, and we discuss the molecular mechanisms that regulate its function.


2006 ◽  
Vol 95 (05) ◽  
pp. 815-821 ◽  
Author(s):  
Yuri Vitkovsky ◽  
Grigory Brill ◽  
Alexander Koltakov ◽  
Nahid Farzam ◽  
David Varon ◽  
...  

SummaryThe purpose of this study was to examine the role of platelets in CD4+ T lymphocyte adhesion to subendothelial extracellular matrix (ECM). Herpesvirus saimiri (HVS)-infected CD4+ T cells were incubated on ECM. An image analysis was used to evaluate T cell adhesion. Under static condition, T cell activation with 4-α-Phorbol 12-myristate 13-acetate (PMA) resulted in a 2.6-fold increase in cell adhesion. However, adhesion was not affected by platelets. In contrast, under flow (200s−1), platelets markedly enhanced both resting and PMA-activatedT cell adhesion (33- and 48-fold), forming lymphocyte-platelet co-aggregates that contain approximately 90% of the adherent T cells. Abrogation of platelet aggregation with tirofiban inhibited formation of platelet-T cell co-aggregates under flow and reduced T cell adhesion by 74%. Separate and combined blockade of CD40L and P-selectin glycoprotein-1 (PSGL-1) on PMA-activated lymphocytes reduced adhesion under flow in the presence of platelets by 28%, 33%, and 55%, respectively. Blockade of β1-integrins decreased adhesion under both static and flow conditions (by 35% and 44%, respectively), while blockade of β2-integrin reduced adhesion only under static condition (by 23%). A similar adhesion pattern was observed using CD4+ T cells isolated from normal donor peripheral blood. In conclusion, platelets support CD4+ lymphocyte adhesion to ECM under flow by formation of heterotypic platelet-lymphocyte co-aggregates involving αIIbβ3 integrin and β1-related integrins, as well as CD40L and PSGL-1.


Cancers ◽  
2018 ◽  
Vol 10 (2) ◽  
pp. 45 ◽  
Author(s):  
Sayan Chakraborty ◽  
Wanjin Hong

In addition to the structural and scaffolding role, the extracellular matrix (ECM) is emerging as a hub for biomechanical signal transduction that is frequently relayed to intracellular sensors to regulate diverse cellular processes. At a macroscopic scale, matrix rigidity confers long-ranging effects contributing towards tissue fibrosis and cancer. The transcriptional co-activators YAP/TAZ, better known as the converging effectors of the Hippo pathway, are widely recognized for their new role as nuclear mechanosensors during organ homeostasis and cancer. Still, how YAP/TAZ senses these “stiffness cues” from the ECM remains enigmatic. Here, we highlight the recent perspectives on the role of agrin in mechanosignaling from the ECM via antagonizing the Hippo pathway to activate YAP/TAZ in the contexts of cancer, neuromuscular junctions, and cardiac regeneration.


2019 ◽  
Vol 63 (3) ◽  
pp. 325-335 ◽  
Author(s):  
Pekka Rappu ◽  
Antti M. Salo ◽  
Johanna Myllyharju ◽  
Jyrki Heino

Abstract Co- and post-translational hydroxylation of proline residues is critical for the stability of the triple helical collagen structure. In this review, we summarise the biology of collagen prolyl 4-hydroxylases and collagen prolyl 3-hydroxylases, the enzymes responsible for proline hydroxylation. Furthermore, we describe the potential roles of hydroxyproline residues in the complex interplay between collagens and other proteins, especially integrin and discoidin domain receptor type cell adhesion receptors. Qualitative and quantitative regulation of collagen hydroxylation may have remarkable effects on the properties of the extracellular matrix and consequently on the cell behaviour.


2019 ◽  
Vol 244 (15) ◽  
pp. 1303-1312 ◽  
Author(s):  
Beata Machnicka ◽  
Renata Grochowalska ◽  
Dżamila M Bogusławska ◽  
Aleksander F Sikorski

Spectrins are proteins that are responsible for many aspects of cell function and adaptation to changing environments. Primarily the spectrin-based membrane skeleton maintains cell membrane integrity and its mechanical properties, together with the cytoskeletal network a support cell shape. The occurrence of a variety of spectrin isoforms in diverse cellular environments indicates that it is a multifunctional protein involved in numerous physiological pathways. Participation of spectrin in cell–cell and cell–extracellular matrix adhesion and formation of dynamic plasma membrane protrusions and associated signaling events is a subject of interest for researchers in the fields of cell biology and molecular medicine. In this mini-review, we focus on data concerning the role of spectrins in cell surface activities such as adhesion, cell–cell contact, and invadosome formation. We discuss data on different adhesion proteins that directly or indirectly interact with spectrin repeats. New findings support the involvement of spectrin in cell adhesion and spreading, formation of lamellipodia, and also the participation in morphogenetic processes, such as eye development, oogenesis, and angiogenesis. Here, we review the role of spectrin in cell adhesion and cell–cell contact.Impact statementThis article reviews properties of spectrins as a group of proteins involved in cell surface activities such as, adhesion and cell–cell contact, and their contribution to morphogenesis. We show a new area of research and discuss the involvement of spectrin in regulation of cell–cell contact leading to immunological synapse formation and in shaping synapse architecture during myoblast fusion. Data indicate involvement of spectrins in adhesion and cell–cell or cell–extracellular matrix interactions and therefore in signaling pathways. There is evidence of spectrin’s contribution to the processes of morphogenesis which are connected to its interactions with adhesion molecules, membrane proteins (and perhaps lipids), and actin. Our aim was to highlight the essential role of spectrin in cell–cell contact and cell adhesion.


Author(s):  
Anderson K. Santos ◽  
Fernanda M. P. Tonelli ◽  
Daniel A. F. Silva ◽  
Kátia N. Gomes ◽  
Luiz O. Ladeira ◽  
...  

1998 ◽  
Vol 111 (17) ◽  
pp. 2477-2486 ◽  
Author(s):  
G. Wiche

Plectin and its isoforms are versatile cytoskeletal linker proteins of very large size (>500 kDa) that are abundantly expressed in a wide variety of mammalian tissues and cell types. Earlier studies indicated that plectin molecules were associated with and/or directly bound to subcomponents of all three major cytoskeletal filament networks, the subplasma membrane protein skeleton, and a variety of plasma membrane-cytoskeleton junctional complexes, including those found in epithelia, various types of muscle, and fibroblasts. In conjunction with biochemical data, this led to the concept that plectin plays an important role in cytoskeleton network organization, with consequences for viscoelastic properties of the cytoplasm and the mechanical integrity and resistance of cells and tissues. Several recent findings lent strong support to this concept. One was that a hereditary disease, epidermolysis bullosa simplex (EBS)-MD, characterized by severe skin blistering combined with muscular dystrophy, is caused by defects in the plectin gene. Another was the generation of plectin-deficient mice by targeted inactivation of the gene. Dying shortly after birth, these animals exhibited severe defects in skin, skeletal muscle and heart. Moreover, in vitro studies with cells derived from such animals unmasked an essential new role of plectin as regulator of cellular processes involving actin stress fibers dynamics. Comprehensive analyses of the gene locus in man, mouse, and rat point towards a complex gene expression machinery, comprising an unprecedented diversity of differentially spliced transcripts with distinct 5′ starting exons, probably regulated by different promoters. This could provide a basis for cell type-dependent and/or developmentally-controlled expression of plectin isoforms, exerting different functions through binding to distinct partners. Based on its versatile functions and structural diversification plectin emerges as a prototype cytolinker protein among a family of proteins sharing partial structural homology and functions.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1506
Author(s):  
Nicola Cirillo ◽  
Stephen S. Prime

Pemphigus and pemphigoid diseases are potentially life-threatening autoimmune blistering disorders that are characterized by intraepithelial and subepithelial blister formation, respectively. In both disease groups, skin and/or mucosal blistering develop as a result of a disruption of intercellular adhesion (pemphigus) and cell-extracellular matrix (ECM) adhesion (pemphigoid). Given that metalloproteinases can target cell adhesion molecules, the purpose of the present study was to investigate the role of these enzymes in the pathogenesis of these bullous dermatoses. Studies examining MMPs (matrix metalloproteinases) and the ADAM (a disintegrin and metalloproteinase) family of proteases in pemphigus and pemphigoid were selected from articles published in the repository of the National Library of Medicine (MEDLINE/PubMed) and bioRxiv. Multiple phases of screening were conducted, and relevant data were extracted and tabulated, with 29 articles included in the final qualitative analysis. The majority of the literature investigated the role of specific components of the MMP family primarily in bullous pemphigoid (BP) whereas studies that focused on pemphigus were rarer. The most commonly studied metalloproteinase was MMP-9 followed by MMP-2; other MMPs included MMP-1, MMP-3, MMP-8, MMP-12 and MMP-13. Molecules related to MMPs were also included, namely, ADAM5, 8, 10, 15, 17, together with TIMP-1 and TIMP-3. The results demonstrated that ADAM10 and MMP-9 activity is necessary for blister formation in experimental models of pemphigus vulgaris (PV) and BP, respectively. The data linking MMPs to the pathogenesis of experimental BP were relatively strong but the evidence for involvement of metalloproteinases in PV was more tentative. These molecules represent potential candidates for the development of mechanism-based treatments of these blistering diseases.


Sign in / Sign up

Export Citation Format

Share Document