scholarly journals HiPS-Endothelial Cells Acquire Cardiac Endothelial Phenotype in Co-culture With hiPS-Cardiomyocytes

Author(s):  
Emmi Helle ◽  
Minna Ampuja ◽  
Alexandra Dainis ◽  
Laura Antola ◽  
Elina Temmes ◽  
...  

Cell-cell interactions are crucial for organ development and function. In the heart, endothelial cells engage in bidirectional communication with cardiomyocytes regulating cardiac development and growth. We aimed to elucidate the organotypic development of cardiac endothelial cells and cardiomyocyte and endothelial cell crosstalk using human induced pluripotent stem cells (hiPSC). Single-cell RNA sequencing was performed with hiPSC-derived cardiomyocytes (hiPS-CMs) and endothelial cells (hiPS-ECs) in mono- and co-culture. The presence of hiPS-CMs led to increased expression of transcripts related to vascular development and maturation, cardiac development, as well as cardiac endothelial cell and endocardium-specific genes in hiPS-ECs. Interestingly, co-culture induced the expression of cardiomyocyte myofibrillar genes and MYL7 and MYL4 protein expression was detected in hiPS-ECs. Major regulators of BMP- and Notch-signaling pathways were induced in both cell types in co-culture. These results reflect the findings from animal studies and extend them to human endothelial cells, demonstrating the importance of EC-CM interactions during development.

Biomedicines ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 462 ◽  
Author(s):  
Alessandro Matarese ◽  
Jessica Gambardella ◽  
Celestino Sardu ◽  
Gaetano Santulli

The two main co-factors needed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to enter human cells are angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). Here, we focused on the study of microRNAs that specifically target TMPRSS2. Through a bioinformatic approach, we identified miR-98-5p as a suitable candidate. Since we and others have shown that endothelial cells play a pivotal role in the pathogenesis of the coronavirus disease 2019 (COVID-19), we mechanistically validated miR-98-5p as a regulator of TMPRSS2 transcription in two different human endothelial cell types, derived from the lung and from the umbilical vein. Taken together, our findings indicate that TMPRSS2 represents a valid target in COVID-19 treatment, which may be achieved by specific non-coding-RNA approaches.


1990 ◽  
Vol 63 (02) ◽  
pp. 303-311
Author(s):  
Tone Børsum

SummaryHuman endothelial cells isolated from umbilical cordswere solubilized in Triton X-100 and examined by crossedimmunoelec-trophoresis using rabbit antiserum against endothelial cells. Endogenous labelling of the endothelialcell proteins with 14Cmannose followed by crossed immunoelectrophoresis and autoradiography revealed about 10 immunoprecipitates. Four of these endothelial cell glycoproteins were labelled by lactoperoxidase catalyzed iodination and thus were surface located. Three of the surface located glycoproteins showed reduced electrophoretic mobility after incubation of the endothelial cells with neuraminidase and were therefore sialoglycoproteins. Amphiphilicity of endothelial cell glycoproteins was studied by crossed hydrophobic interaction immunoelectrophoresis with phenyl-Sepharose in the intermediate gel. Amphiphilic proteins also show increasing electrophoretic migration velocity with decreasing concentration of Triton X-100 in the first dimension gels. Five of the endothelial cell glycoproteins were shown to be amphiphilic using these two techniques.Two monoclonal antibodies against the platelet glycoprotein complex Ilb-IIIa and glycoprotein IlIa, respectively, reacted with the same precipitate of endothelial cells. When a polyclonal antibody against the platelet glycoprotein complex Ilb-IIIa was incorporated into the intermediate gel the position of two endothelial cell precipitates were lowered. One of these was a sialoglycoprotein.


1995 ◽  
Vol 74 (02) ◽  
pp. 698-703 ◽  
Author(s):  
Catherine Lenich ◽  
Ralph Pannell ◽  
Victor Gurewich

SummaryFactor XII has long been implicated in the intrinsic pathway of fibrinolysis, but the mechanism by which it triggers plasminogen activation and targets fibrinolysis has not been established. In the present study, the assembly and function of activated Factor XII (F.XIIa), prourokinase (pro-u-PA), high molecular weight kininogen (H-kininogen), and prekallikrein on human umbilical vein endothelial cells (HUVEC) was investigated. 125I-prekallikrein was shown to bind to HUVEC via receptor-bound H-kininogen in the presence of 50 μM ZnCl2. After the addition of F.XIIa, 78% of the 125I-prekallikrein initially bound to HUVEC was converted to 125I-kallikrein. However, only 6% of the HUVEC-bound 125I-pro-u-PA was thereby activated. This discrepancy was shown to be related to rapid dissociation (>50% within 15 min) of prekallikrein/kallikrein, but not pro-u-PA, from HUVEC. Increasing the level of cell-bound kallikrein increased the portion of cell-bound pro-u-PA activated, indicating that their co-localization was important for this pathway. Finally, F.XIIa was shown to trigger plasminogen activation on HUVEC via this pathway. This assembly of reactants on the endothelium suggests a mechanism whereby local fibrinolysis may be triggered by blood coagulation.


2021 ◽  
Vol 22 (8) ◽  
pp. 3955
Author(s):  
László Bálint ◽  
Zoltán Jakus

Our understanding of the function and development of the lymphatic system is expanding rapidly due to the identification of specific molecular markers and the availability of novel genetic approaches. In connection, it has been demonstrated that mechanical forces contribute to the endothelial cell fate commitment and play a critical role in influencing lymphatic endothelial cell shape and alignment by promoting sprouting, development, maturation of the lymphatic network, and coordinating lymphatic valve morphogenesis and the stabilization of lymphatic valves. However, the mechanosignaling and mechanotransduction pathways involved in these processes are poorly understood. Here, we provide an overview of the impact of mechanical forces on lymphatics and summarize the current understanding of the molecular mechanisms involved in the mechanosensation and mechanotransduction by lymphatic endothelial cells. We also discuss how these mechanosensitive pathways affect endothelial cell fate and regulate lymphatic development and function. A better understanding of these mechanisms may provide a deeper insight into the pathophysiology of various diseases associated with impaired lymphatic function, such as lymphedema and may eventually lead to the discovery of novel therapeutic targets for these conditions.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Amitava Basu ◽  
Vijay K. Tiwari

AbstractEpigenetic mechanisms are known to define cell-type identity and function. Hence, reprogramming of one cell type into another essentially requires a rewiring of the underlying epigenome. Cellular reprogramming can convert somatic cells to induced pluripotent stem cells (iPSCs) that can be directed to differentiate to specific cell types. Trans-differentiation or direct reprogramming, on the other hand, involves the direct conversion of one cell type into another. In this review, we highlight how gene regulatory mechanisms identified to be critical for developmental processes were successfully used for cellular reprogramming of various cell types. We also discuss how the therapeutic use of the reprogrammed cells is beginning to revolutionize the field of regenerative medicine particularly in the repair and regeneration of damaged tissue and organs arising from pathological conditions or accidents. Lastly, we highlight some key challenges hindering the application of cellular reprogramming for therapeutic purposes.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 884
Author(s):  
Marta Cherubini ◽  
Scott Erickson ◽  
Kristina Haase

Acting as the primary link between mother and fetus, the placenta is involved in regulating nutrient, oxygen, and waste exchange; thus, healthy placental development is crucial for a successful pregnancy. In line with the increasing demands of the fetus, the placenta evolves throughout pregnancy, making it a particularly difficult organ to study. Research into placental development and dysfunction poses a unique scientific challenge due to ethical constraints and the differences in morphology and function that exist between species. Recently, there have been increased efforts towards generating in vitro models of the human placenta. Advancements in the differentiation of human induced pluripotent stem cells (hiPSCs), microfluidics, and bioprinting have each contributed to the development of new models, which can be designed to closely match physiological in vivo conditions. By including relevant placental cell types and control over the microenvironment, these new in vitro models promise to reveal clues to the pathogenesis of placental dysfunction and facilitate drug testing across the maternal–fetal interface. In this minireview, we aim to highlight current in vitro placental models and their applications in the study of disease and discuss future avenues for these in vitro models.


1992 ◽  
Vol 1 (4) ◽  
pp. 293-298 ◽  
Author(s):  
Carlton Young ◽  
Bruce E. Jarrell ◽  
James B. Hoying ◽  
Stuart K. Williams

The transplantation of endothelial cells represents a technology which has been suggested for applications ranging from improvement in function of implanted vascular devices to genetic therapy. The use of microvascular endothelial cell transplantation has seen increased use both in animal studies as well as clinical use. This report describes our techniques for the isolation and establishment of initial cultures of microvascular endothelial cells derived from porcine fat. A variety of anatomic sites within the pig were evaluated to determine the appropriateness of different sources of fat for endothelial cell isolation. The properitoneal fat was determined to be optimal due to the predominance of endothelium in this tissue and the ease of isolation of microvascular endothelium following collagenase digestion. The study of endothelial cell transplantation in the porcine model is now possible using the methods described for adipose tissue-derived micro vessel endothelial cell isolation.


2002 ◽  
Vol 283 (2) ◽  
pp. L297-L304 ◽  
Author(s):  
Larissa A. Shimoda ◽  
Laura E. Welsh ◽  
David B. Pearse

Endothelial barrier dysfunction is typically triggered by increased intracellular Ca2+concentration. Membrane-permeable analogs of guanosine 3′,5′-cyclic monophosphate (cGMP) prevent disruption of endothelial cell integrity. Because membrane potential ( E m), which influences the electrochemical gradient for Ca2+ influx, is regulated by K+ channels, we investigated the effect of 8-bromo-cGMP on E m and inwardly rectifying K+ (KIR) currents in bovine pulmonary artery and microvascular endothelial cells (BPAEC and BMVEC), using whole cell patch-clamp techniques. Both cell types exhibited inward currents at potentials negative to −50 mV that were abolished by application of 10 μM Ba2+, consistent with KIR current. Ba2+ also depolarized both cell types. 8-Bromo-cGMP (10−3 M) depolarized BPAEC and BMVEC and inhibited KIR current. Pretreatment with Rp-8-cPCT-cGMPS or KT-5823, protein kinase G (PKG) antagonists, did not prevent current inhibition by 8-bromo-cGMP. These data suggest that 8-bromo-cGMP induces depolarization in BPAEC and BMVEC due, in part, to PKG-independent inhibition of KIR current. The depolarization could be a protective mechanism that prevents endothelial cell barrier dysfunction by reducing the driving force for Ca2+ entry.


Sign in / Sign up

Export Citation Format

Share Document