scholarly journals Hypoxic Characteristic Genes Predict Response to Immunotherapy for Urothelial Carcinoma

Author(s):  
Shuo Hong ◽  
Yueming Zhang ◽  
Manming Cao ◽  
Anqi Lin ◽  
Qi Yang ◽  
...  

Objective: Resistance to immune checkpoint inhibitors (ICIs) has been a massive obstacle to ICI treatment in metastatic urothelial carcinoma (MUC). Recently, increasing evidence indicates the clinical importance of the association between hypoxia and immune status in tumor patients. Therefore, it is necessary to investigate the relationship between hypoxia and prognosis in metastatic urothelial carcinoma.Methods: Transcriptomic and clinical data from 348 MUC patients who underwent ICI treatment from a large phase 2 trial (IMvigor210) were investigated in this study. The cohort was randomly divided into two datasets, a training set (n = 213) and a testing set (n = 135). Data of hypoxia-related genes were downloaded from the molecular signatures database (MSigDB), and screened by univariate and multivariate Cox regression analysis to construct a prognosis-predictive model. The robustness of the model was evaluated in two melanoma cohorts. Furthermore, an external validation cohort, the bladder cancer cohort, from the Cancer Genome Atlas (TCGA) database, was t used to explore the mechanism of gene mutation, immune cell infiltration, signaling pathway enrichment, and drug sensitivity.Results: We categorized patients as the high- or low- risk group using a four-gene hypoxia risk model which we constructed. It was found that patients with high-risk scores had significantly worse overall survival (OS) compared with those with low-risk scores. The prognostic model covers 0.71 of the area under the ROC curve in the training set and 0.59 in the testing set, which is better than the survival prediction of MUC patients using the clinical characteristics. Mutation analysis results showed that deletion mutations in RB1, TP53, TSC1 and KDM6A were correlated with hypoxic status. Immune cell infiltration analysis illustrated that the infiltration T cells, B cells, Treg cells, and macrophages was correlated with hypoxia. Functional enrichment analysis revealed that a hypoxic microenvironment activated inflammatory pathways, glucose metabolism pathways, and immune-related pathways.Conclusion: In this investigation, a four-gene hypoxia risk model was developed to evaluate the degree of hypoxia and prognosis of ICI treatment, which showed a promising clinical prediction value in MUC. Furthermore, the hypoxia risk model revealed a close relationship between hypoxia and the tumor immune microenvironment.

2021 ◽  
Author(s):  
Chongchang Zhou ◽  
Guowen Zhan ◽  
Zhisen Shen ◽  
Yi Shen ◽  
Hongxia Deng ◽  
...  

Abstract Immunotherapy is changing head and neck squamous cell carcinoma (HNSCC) treatment pattern. According to the Chinese Society of Clinical Oncology (CSCO) guidelines, immunotherapy has been deemed as first-line recommendation for recurrent/metastatic HNSCC, marking that advanced HNSCC has officially entered the era of immunotherapy. Long non-coding RNAs impact every step of cancer immunity. Therefore, reliable immune-lncRNA able to accurately predict the immune landscape and survival of HNSCC are crucial to clinical management. In the current study, we downloaded the transcriptomic and clinical data of HNSCC from The Cancer Genome Altas and identified differentially expressed immune-related lncRNAs (DEir-lncRNAs). Further then, Cox and least absolute shrinkage and selection operator (LASSO) regression analyses were performed to identify proper DEir-lncRNAs to construct optimal risk model. Low-risk and high-risk groups were classified based on the optimal cut-off value generated by the areas under curve for receiver operating characteristic curves (AUC), and Kaplan-Meier survival curves were utilized to validate the prediction model. We then evaluated the model based on the clinical factors, immune cell infiltration, chemotherapeutic and immunotherapeutic efficacy between two groups. Our results constructed a risk model consisted of 18 DEir-lncRNA pairs showing significantly association with survival of patients with HNSCC. Besides, HNSCC patients with low risk score significantly enriched of CD8+ T cell, and corelated with high chemosensitivity and immunotherapeutic sensitivity. In summary, our risk model could be served as a promising clinical prediction indicator, effective discoursing of the immune cell infiltration of HNSCC patients, and distinguishing patients who could benefit from chemotherapy and immunotherapy.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jian-yu Shi ◽  
Yan-yan Bi ◽  
Bian-fang Yu ◽  
Qing-feng Wang ◽  
Dan Teng ◽  
...  

Despite extensive research, the exact mechanisms involved in colorectal cancer (CRC) etiology and pathogenesis remain unclear. This study aimed to examine the correlation between tumor-associated alternative splicing (AS) events and tumor immune infiltration (TII) in CRC. We analyzed transcriptome profiling and clinical CRC data from The Cancer Genome Atlas (TCGA) database and lists of AS-related and immune-related signatures from the SpliceSeq and Innate databases, respectively to develop and validate a risk model of differential AS events and subsequently a TII risk model. We then conducted a two-factor survival analysis to study the association between TII and AS risk and evaluated the associations between immune signatures and six types of immune cells based on the TIMER database. Subsequently, we studied the distribution of six types of TII cells in high- and low-risk groups for seven AS events and in total. We obtained the profiles of AS events/genes for 484 patients, which included 473 CRC tumor samples and 41 corresponding normal samples, and detected 22581 AS events in 8122 genes. Exon Skip (ES) (8446) and Mutually Exclusive Exons (ME) (74) exhibited the most and fewest AS events, respectively. We then classified the 433 patients with CRC into low-risk (n = 217) and high-risk (n = 216) groups based on the median risk score in different AS events. Compared with patients with low-risk scores (mortality = 11.8%), patients with high-risk scores were associated with poor overall survival (mortality = 27.6%). The risk score, cancer stage, and pathological stage (T, M, and N) were closely correlated with prognosis in patients with CRC (P < 0.001). We identified 6479 differentially expressed genes from the transcriptome profiles of CRC and intersected 468 differential immune-related signatures. High-AS-risk and high-TII-risk predicted a poor prognosis in CRC. Different AS types were associated with different TII risk characteristics. Alternate Acceptor site (AA) and Alternate Promoter (AP) events directly affected the concentration of CD4T cells, and the level of CD8T cells was closely correlated with Alternate Terminator (AT) and Exon Skip (ES) events. Thus, the concentration of CD4T and CD8T cells in the CRC immune microenvironment was not specifically modulated by AS. However, B cell, dendritic cell, macrophage, and neutrophilic cell levels were strongly correlated with AS events. These results indicate adverse associations between AS event risk levels and immune cell infiltration density. Taken together, our findings show a clear association between tumor-associated alternative splicing and immune cell infiltration events and patient outcome and could form a basis for the identification of novel markers and therapeutic targets for CRC and other cancers in the future.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tuo Liang ◽  
Jiarui Chen ◽  
GuoYong Xu ◽  
Zide Zhang ◽  
Jiang Xue ◽  
...  

AbstractWe established a relationship among the immune-related genes, tumor-infiltrating immune cells (TIICs), and immune checkpoints in patients with osteosarcoma. The gene expression data for osteosarcoma were downloaded from UCSC Xena and GEO database. Immune-related differentially expressed genes (DEGs) were detected to calculate the risk score. “Estimate” was used for immune infiltrating estimation and “xCell” was used to obtain 64 immune cell subtypes. Furthermore, the relationship among the risk scores, immune cell subtypes, and immune checkpoints was evaluated. The three immune-related genes (TYROBP, TLR4, and ITGAM) were selected to establish a risk scoring system based on their integrated prognostic relevance. The GSEA results for the Hallmark and KEGG pathways revealed that the low-risk score group exhibited the most gene sets that were related to immune-related pathways. The risk score significantly correlated with the xCell score of macrophages, M1 macrophages, and M2 macrophages, which significantly affected the prognosis of osteosarcoma. Thus, patients with low-risk scores showed better results with the immune checkpoints inhibitor therapy. A three immune-related, gene-based risk model can regulate macrophage activation and predict the treatment outcomes the survival rate in osteosarcoma.


2021 ◽  
Vol 15 ◽  
Author(s):  
Dezhi Shan ◽  
Xing Guo ◽  
Guozheng Yang ◽  
Zheng He ◽  
Rongrong Zhao ◽  
...  

Intracranial aneurysms (IAs) may cause lethal subarachnoid hemorrhage upon rupture, but the molecular mechanisms are poorly understood. The aims of this study were to analyze the transcriptional profiles to explore the functions and regulatory networks of differentially expressed genes (DEGs) in IA rupture by bioinformatics methods and to identify the underlying mechanisms. In this study, 1,471 DEGs were obtained, of which 619 were upregulated and 852 were downregulated. Gene enrichment analysis showed that the DEGs were mainly enriched in the inflammatory response, immune response, neutrophil chemotaxis, and macrophage differentiation. Related pathways include the regulation of actin cytoskeleton, leukocyte transendothelial migration, nuclear factor κB signaling pathway, Toll-like receptor signaling pathway, tumor necrosis factor signaling pathway, and chemokine signaling pathway. The enrichment analysis of 20 hub genes, subnetworks, and significant enrichment modules of weighted gene coexpression network analysis showed that the inflammatory response and immune response had a causal relationship with the rupture of unruptured IAs (UIAs). Next, the CIBERSORT method was used to analyze immune cell infiltration into ruptured IAs (RIAs) and UIAs. Macrophage infiltration into RIAs increased significantly compared with that into UIAs. The result of principal component analysis revealed that there was a difference between RIAs and UIAs in immune cell infiltration. A 4-gene immune-related risk model for IA rupture (IRMIR), containing CXCR4, CXCL3, CX3CL1, and CXCL16, was established using the glmnet package in R software. The receiver operating characteristic value revealed that the model represented an excellent clinical situation for potential application. Enzyme-linked immunosorbent assay was performed and showed that the concentrations of CXCR4 and CXCL3 in serum from RIA patients were significantly higher than those in serum from UIA patients. Finally, a competing endogenous RNA network was constructed to provide a potential explanation for the mechanism of immune cell infiltration into IAs. Our findings highlighted the importance of immune cell infiltration into RIAs, providing a direction for further research.


2021 ◽  
Author(s):  
Rongxin Chen ◽  
Qing Han ◽  
Huale Zhang ◽  
Jianying Yan

Abstract Background Preeclampsia (PE) is a complex multisystem disease and its etiology remains unclear. The aim of this study was to identify potential immune-related diagnostic genes for PE, analyze the role of immune cell infiltration in PE, and explore the mechanism underlying PE-induced disruption of immune tolerance at the maternal-fetal interface. Methods We used the PE dataset GES25906 from Gene Expression Omnibus and immune-related genes from ImmPort database. The differentially expressed genes (DEGs) were identified using the “limma” package, and the differentially expressed immune-related genes (DEIGs) were extracted from the DEGs and immune-related genes using Venn diagrams. The potential functions of DEIGs were determined by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Furthermore, the protein–protein interaction network was obtained from the STRING database, and it was visualized using Cytoscape software. Least absolute shrinkage and selection operator logistic regression was used to verify the diagnostic markers of PE and build a predicting model. The model was validated using datasets GSE66273 and GSE75010. Finally, CIBERSORT was used to evaluate the infiltration of immune cells in PE tissues. Results Six genes (ACTG1, ENG, IFNGR1, ITGB2, NOD1, and SPP1) enriched in Th17 cell differentiation, cytokine-cytokine receptor interaction, innate immune response, and positive regulation of MAPK cascade pathways were identified, and a predicting model was built. Datasets GSE66273 and GSE75010 were used to validate the model, and the area under the curve was 0.8333 and 0.8107, respectively. Immune cell infiltration analysis revealed an increase in plasma cells and gamma delta T cells and a decrease in resting natural killer cells in the high score group according to the predictive model risk values. Conclusions We developed a risk model to predict PE and proved that immune imbalance at the maternal-fetal interface plays a key role in the pathogenesis of PE.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mingqin Ge ◽  
Jie Niu ◽  
Ping Hu ◽  
Aihua Tong ◽  
Yan Dai ◽  
...  

Objective: This study aimed to construct a prognostic ferroptosis-related signature for thyroid cancer and probe into the association with tumor immune microenvironment.Methods: Based on the expression profiles of ferroptosis-related genes, a LASSO cox regression model was established for thyroid cancer. Kaplan-Meier survival analysis was presented between high and low risk groups. The predictive performance was assessed by ROC. The predictive independency was validated via multivariate cox regression analysis and stratified analysis. A nomogram was established and verified by calibration curves. The enriched signaling pathways were predicted via GSEA. The association between the signature and immune cell infiltration was analyzed by CIBERSORT. The ferroptosis-related genes were validated in thyroid cancer tissues by immunohistochemistry and RT-qPCR.Results: A ferroptosis-related eight gene model was established for predicting the prognosis of thyroid cancer. Patients with high risk score indicated a poorer prognosis than those with low risk score (p = 1.186e-03). The AUCs for 1-, 2-, and 3-year survival were 0.887, 0.890, and 0.840, respectively. Following adjusting other prognostic factors, the model could independently predict the prognosis (p = 0.015, HR: 1.870, 95%CI: 1.132–3.090). A nomogram combining the signature and age was constructed. The nomogram-predicted probability of 1-, 3-, and 5-year survival approached the actual survival time. Several ferroptosis-related pathways were enriched in the high-risk group. The signature was distinctly associated with the immune cell infiltration. After validation, the eight genes were abnormally expressed between thyroid cancer and control tissues.Conclusion: Our findings established a prognostic ferroptosis-related signature that was associated with the immune microenvironment for thyroid cancer.


2021 ◽  
Author(s):  
Jian Xu ◽  
Xiaomin Shen ◽  
Bo Zhang ◽  
Rui Su ◽  
Mingxuan Cui ◽  
...  

Abstract Purpose: To develop a LRP1B gene mutation based prognostic model for hepatocellular carcinoma (HCC) patients risk prediction. Methods: The LRP1B gene mutation rate was calculated from HCC patient samples. Meanwhile, differentially expressed genes according to LRP1B mutant were screened out for prognostic model establishment. Based on this innovative model, HCC patients were categoried into high and low-risk group. The immune status including immune cell infiltration ratio and checkpoints have been explored in two groups. Results: It can be shown here 11 genes demonstrate significant differences according to LRP1B status, which can better predict HCC patient prognosis. The accuracy of the model prediction is evaluated and approved by the AUC value. From the immune cell infiltration ratio analysis, there is a significant difference in the infiltration degree of 7 types of immune cells and 2 immune checkpoints between high and low-risk HCC patients. Meanwhile, LRP1B was tested as a prognostic marker in clinic to predict different stages for HCC with satisfied accurancy. Conclusion: This study has explored a potential prognostic biomarker and developed a novel LRP1B mutation-associated prognostic model for hepatocellular carcinoma, which provides a systematic reference for future better understanding of clinical research.


2021 ◽  
Author(s):  
Wengang Jian ◽  
Gang Wang ◽  
Yipeng Yu ◽  
Licheng Cai ◽  
Yongchun Yu ◽  
...  

Abstract BackgroundAlthough extensive researches related alternative splicing (AS) as the prognostic markers of patients in cancers, which remains unknown in clear cell renal cell carcinoma (ccRCC), especially in immunotherapy. Therefore, a novel survival-associated AS signature was established to predict prognosis of patients and explored its correlation with immune cell infiltration or immune checkpoint expression to explain the phenomenon of resistance to immunotherapy in ccRCC.Methodsccording to AS data, clinical information and gene expression data in ccRCC, overall survival-related AS events was identified and further the AS-related prognostic risk model established by LASSO regression and multi-Cox regression analysis was evaluated by Kaplan-Meier survival analysis, the ROC curves and a nomogram model. Then we clarified the biological processes and pathways by GSEA, and further measured the immune cell infiltration by ESTIMATE, CIBERSORT and ssGSEA. Finally we analysed the clinical features and immune features of different parental genes, and quested the splicing factors regulating riskScore-related AS events by Spearman correlation analysis.ResultsWe obtained the most significant 5 AS events, including C4orf19|69001|AT, UACA|31438|AP, FAM120C|89237|AT, TRIM16L|39629|AP and SEC31A|100881|ES, to establish the prognostic risk model, and further illustrated the stability and importance of the riskScore prognostic signatures. Then we found that in high risk group, most of the top 10 GO enrichments and the KEGG pathway were closely related to the immunity, and the higher immune cell infiltration, and higher expression of classic immune checkpoints such as PD1 and CTLA4. In addition, 6 different parental genes were obtained, including C4orf19, ARHGAP24 DNASE1L3, P4HA1, SLC39A14 and TAF1D. These 6 genes could not be the independent prognostic signatures, but the expression of these genes was closely related to immune cells infiltration and the expression of immune checkpoints. Finally, we got aberrant 52 splicing factors regulating riskScore-related AS events.ConclusionOur study discovered that overall survival-related AS events mediated by aberrant splicing factors can be constructed a prognostic risk model to predict prognosis of patiens and utilized to index the situation of immune cell infiltration and immune checkpoint expression that impact tumor immune microenvironment in ccRCC.


Author(s):  
Liuxing Wu ◽  
Xin Hu ◽  
Hongji Dai ◽  
Kexin Chen ◽  
Ben Liu

Despite robust evidence for the role of m6A in cancer development and progression, its association with immune infiltration and survival outcomes in melanoma remains obscure. Here, we aimed to develop an m6A-related risk signature to improve prognostic and immunotherapy responder prediction performance in the context of melanoma. We comprehensively analyzed the m6A cluster and immune infiltration phenotypes of public datasets. The TCGA (n = 457) and eleven independent melanoma cohorts (n = 758) were used as the training and validation datasets, respectively. We identified two m6A clusters (m6A-clusterA and m6A-clusterB) based on the expression pattern of m6A regulators via unsupervised consensus clustering. IGF2BP1 (7.49%), KIAA1429 (7.06%), and YTHDC1 (4.28%) were the three most frequently mutated genes. There was a correlation between driver genes mutation statuses and the expression of m6A regulators. A significant difference in tumor-associated immune infiltration between two m6A clusters was detected. Compared with m6A-clusterA, the m6A-clusterB was characterized by a lower immune score and immune cell infiltration but higher mRNA expression-based stemness index (mRNAsi). An m6A-related risk signature consisting of 12 genes was determined via Cox regression analysis and divided the patients into low- and high-risk groups (IL6ST, MBNL1, NXT2, EIF2A, CSGALNACT1, C11orf58, CD14, SPI1, NCCRP1, BOK, CD74, PAEP). A nomogram was developed for the prediction of the survival rate. Compared with the high-risk group, the low-risk group was characterized by high expression of immune checkpoints and immunophenoscore (IPS), activation of immune-related pathways, and more enriched in immune cell infiltrations. The low-risk group had a favorable prognosis and contained the potential beneficiaries of the immune checkpoint blockade therapy and verified by the IMvigor210 cohort (n = 298). The m6A-related signature we have determined in melanoma highlights the relationships between m6A regulators and immune cell infiltration. The established risk signature was identified as a promising clinical biomarker of melanoma.


Sign in / Sign up

Export Citation Format

Share Document